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Abstract: Food is an important source of melatonin (MT), which belongs to a group known as

chronobiotics, a class of substances that affect the circadian system. Currently, no studies have been

conducted on how the consumption of foods containing MT (FMT) is associated with indicators char-

acterizing the human circadian system. In this study, we tested the hypothesis that FMT consumption

is associated with chronotype and social jetlag. A total of 1277 schoolchildren and university students

aged M (SD) 19.9 (4.1) years (range: 16–25 years; girls: 72.8%) participated in a cross-sectional study.

Each participant completed an online questionnaire with their personal data (sex, age, height, weight,

waist circumference, and academic performance) and a sequence of tests to assess their sleep–wake

rhythm (the Munich Chronotype Questionnaire), sleep quality (the Pittsburgh Sleep Quality Index),

and depression level (the Zung Self-Rating Depression Scale). Study participants also completed a

modified food frequency questionnaire that only included foods containing MT (FMT). They were

asked how many foods containing MT (FMT) they had eaten for dinner, constituting their daily

serving, in the past month. The consumption of foods containing MT (FMT) during the day (FMTday)

and at dinner (FMTdinner) was assessed using this test. Multiple regression analyses were performed

to assess the association between the studied indicators. We found that higher FMTday values were

associated with early chronotype (β = −0.09) and less social jetlag (β = −0.07), better sleep quality

(β = −0.06) and lower levels of depression (β = −0.11), as well as central adiposity (β = −0.08). Higher

FMTdinner values were associated with a lower risk of central adiposity (β = −0.08). In conclusion,

the data obtained confirm the hypothesis that the consumption of foods containing MT (FMT) is

associated with chronotype and social jetlag in adolescents and young adults.

Keywords: food melatonin; chronotype; social jetlag; sleep quality; depression; schoolchildren;

university students

1. Introduction

The circadian system (CS) in mammals, formed during evolution, is present in all
species of organisms living on the Earth’s surface [1], including humans [2]. Its main func-
tion is maintaining the circadian rhythms of biochemical, physiological, and psychological
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processes and synchronizing endogenous rhythms with 24-h environmental rhythms [3].
Retinal ganglion cells containing the pigment melanopsin perceive the daily rhythm of
illumination, which is the primary external synchronizing signal for the CS [4]. From there,
along the retinohypothalamic tract, the signal is transmitted to the suprachiasmatic nuclei
(SCN) of the hypothalamus. In the SCN, the autonomous circadian rhythm of electrical
activity synchronizes with the 24-h rhythm of illumination. Furthermore, information on
the daylight period is transmitted using neurohumoral signals to the underlying peripheral
organs. Signal transduction from the SCN to peripheral organs is mediated by the hor-
mone melatonin (MT), which is synthesized by the pineal gland in antiphase with daylight
rhythm, thus defining the boundaries of “biological night” [5].

The important role of CS in human life has been repeatedly confirmed [2]. Over
the past few hundred years, the human environment has dramatically changed. Most
humans live in cities and spend most of their time indoors, and artificial lighting has
become widespread. As a result, the role of climatic factors in human life has significantly
decreased, and the role of social factors has increased. This shift has affected the function
of human CS. Recently, a specific impairment of human CS function called social jetlag
(SJL) [6] has been described. SJL, which is more common in late chronotype individuals, is
caused by an imbalance between sleep–wake and social life rhythms [7]. SJL is most often
detected between the ages of 16 and 18 [8] when puberty-induced sleep–wake phase delay
reaches its maximum and leads to adolescents’ inability to adapt to school schedules [9].
SJL has been associated with decreased academic performance [10], cognitive function [11],
increased depression risk [12], and obesity [13].

Thus, the human CS cannot often adapt to life in a social environment, which leads to
negative consequences. Therefore, it is necessary to use additional mechanisms to maintain
its functional state, including nutrition and food regulation. Food has been actively studied
as a source of chronobiotics, a class of substances that regulate CS function [14]. One of
the best-known chronobiotics is MT [5]. Knowledge has increased regarding the content of
MT in foods of plant and animal origin [15]. Significant levels of FMT have been noted in
some food products, such as cherries and walnuts [16,17]. In experimental studies, FMT
consumption has been associated with an increase in blood MT levels [17,18], improved
sleep function [19–23], and psychoemotional state [24]. However, in some studies [25,26],
FMT consumption had no positive effect on sleep function. The reason for this may be that
these studies investigated the effect of adding certain foods with known FMT content to
the diet. However, the total dietary intake of FMT was not controlled. To date, only one
study has examined the effect of total FMT intake on the human organism [27]. The authors
found an inverse association between total FMT consumption and all-cause mortality risk.
In the available literature, there is no information on FMT’s effect on human CS.

The purpose of this study was to test whether FMT-containing foods consumption is
associated with indicators characterizing the human circadian system. To achieve this goal,
the following tasks were set: (a) to estimate the total FMT content in food consumed by a
person during the day and at dinner; (b) to study associations between FMT consumption
and the sleep–wake rhythm (chronotype, social jetlag, sleep duration, sleep quality) as well
as cognitive (academic performance), psychoemotional (depression), and anthropometric
(body mass index, central adiposity) characteristics.

2. Materials and Methods

2.1. Objectives and Study Design

The online survey was conducted from November 2021 to December 2022 and involved
the anonymous and voluntary participation of secondary school students from the Komi
Republic and university students from Syktyvkar, Kirov, and Tyumen, Russia. Teachers
and school psychologists distributed information regarding the study. Exclusion criteria
included clinically diagnosed sleep disorders, eating disorders, and night shift work.
Eligible participants included male and female schoolchildren and university students aged
16–25 who provided their informed consent. Out of 1455 invitations distributed, 178 people
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(12%) refused to participate in the survey or did not complete most of the questionnaires.
The final database included 1277 questionnaires.

This study was approved by the Ethics Committee of the Institute of Physiology of the
Komi Science Centre of the Ural Branch of the Russian Academy of Sciences (Protocol #6,
21.09.2020). Verbal informed consent was obtained from all study participants. Additionally,
schoolchildren’s parents provided written informed consent.

2.2. Instruments

Each study participant provided personal information and completed the Munich
Chronotype Questionnaire (MCTQ) [7], Zung Self-Rating Depression Scale (ZSDS) [28],
and Pittsburgh Sleep Quality Index (PSQI) [29].

2.2.1. Personal Data

The study participants were asked to specify their place of residence, sex, age, academic
performance, height, weight, and waist circumference. Weight and height were used to
evaluate body mass index (BMI), calculated as weight in kilograms divided by height in
meters squared. Sex- and age-adjusted BMI percentiles (BMI%) were determined using
BMI growth charts [30]. Four BMI categories (BMIc) were defined according to World
Health Organization criteria [30]: (1) underweight (n = 101); (2) normal weight (n = 1003);
(3) overweight (n = 122); and (4) obese (n = 51). The waist circumference to height ratio
(WHtR) was also calculated [31]. Since the study began near the end of the third wave
of the COVID-19 pandemic, some participants (n = 349) completed the questionnaires
while remote learning. We adjusted our data analysis to reflect the significant alterations to
sleep–wake patterns caused by remote learning [32].

2.2.2. Academic Performance

To assess academic performance, all participants were asked the following question:
‘What was your academic performance (GPA) for the quarter or session preceding the
study?’. In Russia, a unified, coded grading system for schoolchildren and university
students is used. It consists of five grade points. Scores “1” and “2” correspond to unsat-
isfactory (requiring retakes of exams), “3”—low, “4”—average, and “5”—high academic
performance. The mean GPA value among the study participants was M (SD): 4.30 (0.51).

2.2.3. MCTQ

The test questions concerned sleep onset time, awakening time on weekdays and free
days, the use of an alarm clock, and the length of the school week. Based on these data,
the following indicators were calculated: chronotype (MSFSC), social jetlag (SJL), average
weekly sleep duration (SlD), and sleep efficiency (SlE). The formulas and calculation
methods for the indicators listed above were also described in Borisenkov et al. [33]:

SlD = (SlDw × [7 − FD] + SlDF × FD)/7 (1)

SlE = TiB/SlD × 100 (2)

MSFSC = MSF − 0.5 × (SlDF − SlD) (3)

SJL = MSF − MSW (4)

where SlDF: sleep duration on free days; SlDW: sleep duration on weekdays; SlD: average
weekly sleep duration; TiB: time in bed; FD: number of free days; SlE: sleep efficiency;
MSF: mid-point of the sleep phase on free days; MSW: mid-point of the sleep phase on
weekdays; SJL: social jetlag; and MSFSC: mid-point of the sleep phase on free days, adjusted
by the sleep debt accumulated on weekdays (chronotype).
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2.2.4. PSQI

To assess sleep quality, we used the Russian version of the PSQI [34]. This test
consists of 19 questions related to sleep quality, including sleep latency, duration, efficiency,
disturbance, use of sleep medication, and daytime sleepiness for a one-month period.
Global PSQI scores range from 0 to 21 points. In our sample, the scores ranged from 0 to 16,
with an overall group M (SD) of 6.4 (2.8). According to the test authors, a PSQI score of
≤5 indicates good-quality sleep, and a PSQI score of >5 indicates poor-quality sleep [29].

2.2.5. ZSDS

Depression levels were assessed using the ZSDS test [28]. The ZSDS comprises 20 state-
ments describing depression symptoms. The sum of raw ZSDS scores ranging from 20 to 80
was converted to ZSDS indices (ZSDSIs) varying from 25 to 100, as described by Zung [35]
and Passik et al. [36]. The ZSDSIs were used to evaluate four levels of depression: I—no
depression (ZSDSI ≤ 50); II—minimal to mild depression (ZSDSI 51–59); III—moderate to
significant depression (ZSDSI 60–69); and IV—severe to extreme depression (ZSDSI ≥ 70).
Cronbach’s α for this sample was 0.769.

2.2.6. MT-Containing Foods Consumption

FMT intake was assessed using the modified food frequency questionnaire (FFQ). Each
study participant was asked to choose from a list of products that, according to previous
studies, contain MT. They were also asked to answer the following questions:

1. How often have you consumed these foods in the past month? Answer options: never,
1–2 times a month, 3–4 times a month, 2–3 times a week, 4–6 times a week, 1–2 times
a day, 3–4 times a day, more than 4 times a day.

2. How many servings of these foods did you consume in one meal (this question was
accompanied by a picture indicating the size of one serving and the product’s weight
in grams)? Answer options: 0.5, 1, 2, 3, 4, or 5 servings.

3. What percentage of the foods above was eaten during dinner? The response options
were 0, 25, 50, 75, or 100%.

These data were used to calculate FMT consumption per day (FMTday) and per dinner
(FMTdinner) by multiplying the average number of MT-containing foods consumed per day
and at dinner by the average MT content in those products (Table S1). The calculations are
presented in Supplementary Materials.

2.3. Data and Statistical Analyses

We used SPSS version 20 (SPSS, Inc., Chicago, IL, USA) for statistical data analyses.
Table 1 presents the continuous variables (mean, standard deviations, and estimates of nor-
mality of distribution) used in this study. The distribution of six variables (Age, BMI, WHtR,
SlE, FMTday, and FMTdinner) differed from normal. Therefore, in further analyses, trans-
formed indicators (Agec, BMI%, WHtRc, SlEc, FMT1day, and FMT1dinner) with a normal
distribution were used (Table 1). Table 2 presents the categorical variables and codes.

A series of multiple regression analyses were performed in which the continuous
values BMI%, WHtRc, MSFsc, SJL, SlD, SlEc, PSQI, ZSDSI, and GPA were used as dependent
variables, and Agec, Sex (codes: 1—females; 2—males), FMT1day, FMT1dinner, city (codes:
1—Syktyvkar, 2—Kirov, 3—Tyumen), and mode of study (codes: 1—regular, 2—remote)
were used as independent variables (predictors). A procedure of stepwise inclusion was
used to determine predictors for the model. Only predictors with significant regression
coefficients were included in the final model. The variance inflation factor was used to
evaluate multicollinearity in the model, as described in Dormann et al. [37]. Predictors
were excluded from the model if the variance inflation factor was ≥5.
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Table 1. Descriptive statistics of continuous variables used in the study.

Parameters, Units Abbreviation Mean SD S K

Age, years Age 19.91 4.11 4.02 20.50
a Agec 4.48 2.06 −0.38 0.08

Body mass index, kg/m2 BMI 21.72 3.68 1.40 3.18
b BMI% 48.06 24.73 0.07 −0.51

Waist to height ratio, cm WHtR 0.42 0.06 0.63 3.01
c WHtRc 0.37 0.07 0.41 −0.73

Social jetlag, h SJL 1.21 1.26 0.65 0.72
Chronotype, h MSFsc 4.65 1.52 0.36 0.80

Sleep duration, h SlD 7.09 1.39 −0.12 0.33
Sleep efficiency, % SlE 87.36 9.00 −1.66 3.99

d SlEc 82.73 8.59 −0.45 0.32
Sleep quality, scores PSQI 6.31 2.80 0.54 0.16
Depression, scores ZSDSI 47.36 12.25 −0.50 0.22

Academic performance, scores GPA 4.30 0.51 −0.38 −0.71
Food MT consumption for day, ng FMTday 2209.76 4183.19 7.49 81.68

e FMT1day 7.01 1.13 0.21 0.32

Food MT consumption for dinner, ng FMTdinner 897.75 2536.80 10.86 153.43
f FMT1dinner 5.68 1.50 −0.14 0.49

SD: standard deviation; S: skewness; K: kurtosis; a Agec = 1/exp(age); b BMI%: BMI percentiles (see Materials and

Methods for details); c WHtRc: categories were defined as described in Table 2; d SlEc: categories were defined as

described in Table 2; e FMT1day = Ln(FMTday); f FMT1dinner = Ln(FMTdinner).

Table 2. Descriptive statistics of categorical variables used in the study.

Parameter Categories N %

City Syktyvkar 280 21.92
Kirov 263 20.60

Tyumen 734 57.48
Study mode Regular 928 72.67

Remote 349 27.33
Sex Female 930 72.83

Male 347 27.17
WHtRc, categories ≤0.39 483 37.82

0.40–0.49 653 51.14
≥0.5 141 11.04

WHtRc1 categories <0.5 1020 88.96
≥0.5 120 11.04

BMIc, categories Underweight/Normal weight 1140 86.45
Overweight/Obese 173 13.55

SlEc, categories ≤79 215 16.83
80–89 434 33.99
90–99 482 37.74
100 146 11.43

PSQIc, categories ≤5 540 42.29
>5 737 57.71

ZSCSIc, categories No to minimal depression 1046 81.91
Moderate to severe depression 231 18.09

A series of binary logistic regression analyses were performed using Ov/Ob (Codes:
0—BMIc 1 + 2, 1—BMIc 3 + 4), WHtRc (0—WHtR < 0.5, 1—WHtR ≥ 0.5), SJL (0—SJL < 1,
1—SJL ≥ 1), PSQIc (0—PSQI ≤ 5, 1—PSQI > 5), ZSDSIc (0—ZSDSI < 60, 1—ZSDSI ≥ 60)
as dependent variables and Agec, Sex, FMT1day, FMT1dinner, city (codes: 1—Syktyvkar,
2—Kirov, 3—Tyumen), and mode of study (codes: 1—Regular, 2—Remote) were included
as independent variables. A procedure of stepwise inclusion was used to determine the final
set of predictors in the model. The goodness of fit was evaluated by the Hosmer–Lemeshow
test and Omnibus tests of model coefficients.
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Two analyses of covariance (ANCOVAs) were performed using tertiles of FMT1day

and FMT1dinner as fixed factors; BMI%, WHtRc, SJL, MSFsc, SlD, SlEc, PSQI, ZSDSI, and
GPA as dependent variables; and Agec, Sex (codes: 1—females; 2—males) city (codes:
1—Syktyvkar, 2—Kirov, 3—Tyumen), and mode of study (codes: 1—regular, 2—remote) as
covariates. Eta-squared (ï2) was used to evaluate effect size.

3. Results

The mean dietary intake of FMTday was M (SD) 2209.8 (4183.2) ng/day and FMTdinner

897.8 (2536.8) ng/dinner (Table 3).
Analysis of covariance showed a significant association between FMTday and central

adiposity, chronotype, social jetlag, sleep quality, and depression (Table 4, Figure 1A,B). A
significant association between FMTdinner and central adiposity was noted (Table 5). The
indices characterizing central adiposity, chronotype, social jetlag, and depression were
significantly lower in people consuming FMTday more than 1651.1 ng/day (Table 3). The
central adiposity index was significantly lower in people consuming FMTdinner more than
577.3 ng/dinner (Table 3).

Students who consumed more FMTday and FMTdinner had lower central adiposity
index values (Models 1 and 2, Table 6). Students who consumed more FMTday had an
earlier chronotype (Model 3, Table 6), less social jetlag (Model 4, Table 6), better sleep
quality (Model 5, Table 6), and fewer depression symptoms (Model 6, Table 6).

The logistic regression analysis indicated that schoolchildren and students with higher
FMTday consumption did not show moderate/severe depression symptoms (Table 7).

≤

≥

≥

≤

≤

tt

  

ffFigure 1. The association of FMT1day with MSFsc (A) and SJL (B). The differences between the

compared groups are significant E > e (p < 0.001), F > f (p < 0.05). Abbreviations: MSFsc: chronotype;

SJL: social jetlag; FMTday: total daily food melatonin consumption; FMT1day = Ln(FMTday); Error

bars: SD.

Table 3. Descriptive statistics of FMTday and FMTdinner.

Parameter Tertiles M SD Min Max

FMTday 1 (Low) 277.49 154.25 10.92 646.80
2 (Middle) 1063.84 279.28 647.29 1650.39
3 (High) 5194.97 6232.46 1651.09 67,614.85

FMT1day 1 (Low) 5.82 0.55 2.39 6.47
2 (Middle) 6.93 0.26 6.47 7.41
3 (High) 8.27 0.65 7.41 11.12

FMTdinner 1 (Low) 77.28 43.09 1.25 156.54
2 (Middle) 310.78 109.71 157.01 577.02
3 (High) 2300.28 4030.83 577.29 41,677.00

FMT1dinner 1 (Low) 4.08 0.90 0.22 5.06
2 (Middle) 5.69 0.35 5.06 6.37
3 (High) 7.30 0.79 6.37 10.64

FMT1day = Ln(FMTday); FMT1dinner = Ln(FMTdinner). Values marked in bold are significant; data presented as M (SD).
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Table 4. Association of FMT1day with anthropometric, sleep and psychoemotional characteristics,

and academic performance.

Dependent
Variables

Tertiles of FMTday
F P ïïï

2

1 (Low) 1 2 (Middle) 3 (High)

BMI% 48.41 (24.46) 47.37 (24.99) 48.35 (24.74) 0.422 0.656 0.001
WHtRc, cm 0.42 (0.06) 0.42 (0.07) 0.41 (0.07) 3.024 0.049 0.005

SlD, h 7.17 (1.40) 7.11 (1.37) 7.01 (1.40) 1.388 0.250 0.002
PSQI, scores 6.63 (2.83) B 6.25 (2.75) 6.01 (2.80) b 3.326 0.036 0.005

MSFsc, h 4.77 (1.54) C 4.64 (1.46) 4.54 (1.54) c 5.373 0.005 0.008

SJL, h 1.30 (1.28) A 1.21 (1.22) 1.13 (1.27) a 3.038 0.048 0.005

ZSDSI, scores 48.87 (12.32) D 47.95 (12.17) C 45.19 (11.93) c,d 7.620 0.001 0.012

GPA, scores 4.24 (0.52) c 4.37 (0.50) C 4.31 (0.50) 2.848 0.058 0.005

FMTday: values of food melatonin consumption for day as described in Table 1; 1 threshold values of tertiles
presented in Table 3; BMI%: body mass index, percentiles; WHtR: waist to height ratio; SlD: sleep duration;
PSQI: sleep quality, global scores; MSFsc: chronotype; SJL: social jetlag; ZSDSI: depression, scores; GPA: aca-
demic performance; ANCOVAs were performed using variables marked in the left column as dependent
variables, “FMTday” as fixed factor and “agec” and “sex” (codes: 1—females, 2—males), “city” (codes: 1—
Syktyvkar, 2—Kirov, 3—Tyumen), and “mode of study” (codes: 1—regular, 2—remote) as covariates; F: Fisher test;
P: significance of F-test; ï

2: effect size; values marked in bold are significant; data presented as M (SD); post hoc

comparisons A > a: p < 0.05; B > b: p < 0.01; C > c: p < 0.001 D > d: p < 0.0001.

Table 5. Association of FMT1dinner with anthropometric, sleep, psychoemotional characteristics, and

academic performance.

Dependent
Variables

Tertiles of FMTdinner
F P ïïï

2

1 (Low) 1 2 (Middle) 3 (High)

BMI% 48.59 (25.28) 48.17 (23.76) 47.65 (25.16) 0.609 0.544 0.001
WHtRc 0.43 (0.06) A 0.42 (0.06) 0.41 (0.07) a 4.203 0.015 0.008

SlD 7.15 (1.36) 7.14 (1.35) 6.99 (1.43) 1.175 0.309 0.002
PSQI 6.41 (2.82) 6.29 (2.72) 6.19 (2.76) 0.172 0.842 0.000

MSFsc 4.67 (1.51) 4.65 (1.52) 4.63 (1.54) 0.800 0.450 0.001
SJL 1.24 (1.22) 1.23 (1.29) 1.16 (1.26) 0.370 0.690 0.001

ZSDSI 48.66 (12.57) B 47.21 (11.83) 46.30 (11.88) b 2.228 0.108 0.004

GPA 4.26 (0.51) a 4.34 (0.51) A 4.31 (0.51) 2.434 0.088 0.004

FMTdinner: values of food melatonin consumption for dinner as described in Table 1; 1 threshold values of tertiles
presented in Table 3; the rest of the abbreviations and indices are as described in Table 4; data presented as M (SD).

Post hoc comparisons A > a: p < 0.05; B > b: p < 0.01.

Table 6. Results of multiple regression analyses a.

# Dependent Variable Predictors B β R2
∆R2 P VIF

1 WHtRc Agec 0.003 0.180 0.034 0.034 0.000 1.002
Sex 0.022 0.144 0.053 0.018 0.000 1.011

FMT1day −0.005 −0.082 0.059 0.007 0.005 1.012

2 WHtRc Agec 0.003 0.180 0.033 0.033 0.000 1.000
Sex 0.022 0.144 0.052 0.019 0.000 1.005

FMT1dinner −0.003 −0.083 0.059 0.007 0.005 1.005

3 MSFsc Agec −0.033 −0.091 0.008 0.008 0.001 1.000
FMT1day −0.112 −0.088 0.016 0.008 0.002 1.000

4 SJL Agec −0.026 −0.084 0.007 0.007 0.003 1.000
FMT1day −0.104 −0.068 0.012 0.005 0.016 1.000
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Table 6. Cont.

# Dependent Variable Predictors B β R2
∆R2 P VIF

5 PSQI Sex −1.155 −0.183 0.036 0.036 0.000 1.013
FMT1day −0.132 −0.056 0.039 0.003 0.043 1.013

6 ZSDSI Sex −6.359 −0.232 0.060 0.060 0.000 1.012
FMT1day −1.131 −0.111 0.072 0.012 0.000 1.012

WHtRc: waist to height ratio, categorical; MSFsc: chronotype; SJL: social jetlag; PSQI: sleep quality, global scores;
ZSDSI: depression, scores; a each model included indicators presented in Table 1 as dependent variables and
“FMT1day”, “FMT1dinner”, “agec“, “sex“ (codes: 1—females; 2—males), “city“ (codes: 1—Syktyvkar, 2—Kirov,
3—Tyumen), and “mode of study” (codes: 1—regular, 2—remote), in the models 3–6 “BMIc“ (codes:
1—underweight; 2—normal weight; 3—overweight; 4—obese) as predictors, but only significant variables were
included in the final model; B: non-standardized regression coefficient; β: standardized regression coefficient;
P: Bonferroni-corrected significance of B; R2: total variance accounted for predictors at their stepwise inclusion
in the model; ∆R2: portion of the variance accounted for by separate predictors in the model; VIF: variation
inflation factor.

Table 7. Results of logistic regression analyses a.

Dependent
Variable

Predictors B OR 95% CI P b
Omnibus Test Hosmer-Lemeshov Test

χ2 P χ2 P

ZSDSIc Sex −1.058 0.374 0.230 0.525 0.000 41.264 0.000 2.641 0.955
FMT1day −0.180 0.835 0.736 0.948 0.005

BMIc: body mass index, categorical (codes: 0—underweight/normal weight, 1—overweight/obesity); ZSDSIc:
depression (codes: 0—no/light depression, 1—moderate/severe depression); a a series of logistic regression
analyses were performed using the indicators presented in Table 3 specified as dependent variables, while
“agec“, “sex“ (codes: 1—female; 2—male) “city“ (codes: 1—Syktyvkar, 2—Kirov, 3—Tyumen), “mode of study“
(codes: 1—regular, 2—remote), and indicator “BMIc“ (codes: 1—underweight; 2—normal weight; 3—overweight;
4—obese) in the Model 2 were specified as independent variables; the code “0” was used in the models as the
comparison group. B: regression coefficient; OR: odds ratio; CI: confidence interval; b P: Bonferroni-corrected
significance of the regression coefficient; Omnibus and Hosmer–Lemeshow test: goodness of fit tests used for
the models.

4. Discussion

Our study is the first to show that total FMT intake is associated with sleep–wake
rhythm and social jetlag in adolescents and young adults. Adolescents and young adults
who consume more FMT-containing foods throughout the day have a less pronounced
delay in sleep–wake rhythm phase and circadian misalignment. We found a direct as-
sociation between FMTday and MCTQ-derived “weekend mid-sleep phase adjusted for
school-day sleep debt (MSFsc)” [7]. This indicator is a quantitative measure of an individ-
ual’s chronotype. Previously, MSFsc and dim light MT onset (DLMO) have been closely
associated [38,39], representing a reliable marker of the endogenous rhythm in human
CS [5]. In addition, we noted an inverse association between FMTday and SJL, a quantitative
measure of circadian misalignment [6].

The data obtained indicate that FMT consumption is one of the ways to prevent SJL
and, consequently, circadian-misalignment-related problems in adolescents, such as low
academic performance [10], depression [12], and obesity [13]. This concept is supported by
the association between FMT and anthropometric measures (central adiposity) as well as
psychoemotional indicators (depression). This conclusion has practical importance since
circadian misalignment has become widespread among students. In different countries,
social jetlag detection rates widely vary, from 40.1% in Japan [40] to 86.4% in Russia [8].

Our study also showed that schoolchildren and university students who consume
more FMT during the day have higher sleep quality. These data are consistent with
previously published data on FMT’s positive effect on sleep function [19–23]. In particular,
MT-rich foods for dinner and breakfast have previously been shown to increase sleep
duration and efficiency [19,21,22] as well as reduce sleep latency [19] in adults and the
elderly. One study [22] found that drinking cherry juice concentrate with high MT content
in the morning and evening for a week increases the amplitude and mesor, but not the
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phase of the 24-h rhythm of MT metabolite excretion in the urine. The authors also noted an
increase in sleep duration and efficiency, as assessed by actimetry. Cherry juice concentrate
similarly affected the sleep quality of 65-year-olds in another study [20]. In young adults
with low self-reported sleep quality, consuming two kiwifruit an hour before bedtime for
four weeks increased PSQI-derived total sleep duration and efficiency [21].

It should be noted that not all study results can be logically explained within our
hypothesis regarding FMT’s chronobiotic effects. The close relationship between FMTday

and the studied indicators, compared with FMTdinner, does not fit with the framework of
this concept. The weak association of FMTdinner with sleep-wake rhythm characteristics
may be due to the presence of substances in food that prevent FMT’s action. However,
analysis of such substances was not performed in the present study. It can be speculated
that food containing an effective FMT dose also contains an excess amount of carbohydrates,
fats, etc., which can interfere with FMT’s positive effects. Sleep quality is adversely affected
by excessive food intake before bedtime [41], and excessive fat content in one’s daily diet
negatively affects CS function [42]. Eating a high-calorie meal for dinner may also delay
the sleep–wake rhythm phase [43].

A more pronounced chronobiotic effect of FMTday, compared with FMTdinner, could
be explained by the fact that adolescents and young adults consume the bulk of their
daily diet in the afternoon. Circadian misalignment causes significant changes in eating
behavior, such as skipping breakfast [44] and refusing a full lunch during classes [45]. As
previously demonstrated, the sleep–wake rhythm phase shifted earlier when exogenous
MT was administered in the afternoon, even 11 h before the sleep midpoint [46].

At a dose of 1300 ng/day of FMTday, we observed a significant change in most of the
parameters studied. This dosage is significantly less than the minimum dose of exogenous
MT (0.3–0.5 mg), at which chronobiotic effects were previously noted [46,47]. Ingesting
0.3 mg of MT in the second half of the day has been found to shift the sleep–wake rhythm
phase to an earlier time of day [46]. In this regard, we should note that our methodology can
only be characterized as semi-quantitative, providing a rough estimate of FMT consumption.
We did not evaluate the dietary intake of tryptophan, a precursor to serotonin and MT
biosynthesis. The consumption of cereals enriched with tryptophan (60 mg) for dinner and
breakfast leads to an increase in urinary excretion of MT metabolites, positively affecting
sleep function and reducing depression risk in the elderly [48]. Furthermore, it cannot
be ruled out that the FMT dose affecting CS function during chronic consumption is
significantly lower than with short-term exogenous MT administration. Nagata et al. [27],
who carefully estimated total dietary FMT intake, found even lower FMTday values of
29.8–32.3 ng/day. At the same time, the authors noted a significant inverse relationship
between FMTday and total mortality risk in a large sample of Japanese residents > 35 years
old (about 30,000 people).

Our work has several strengths and perspectives. An inverse relationship was first
noted between FMT and social jetlag and indicators closely related to circadian misalign-
ments, such as obesity and depression. We suggested that FMTday and FMTdinner can
be used as integrated indicators of MT-containing foods consumption to help develop
regimens and diets to prevent the negative consequences of circadian desynchrony. At the
same time, this work has limitations. It should be noted that FFQ validation is required to
determine food MT intake. The FMTday and FMTdinner indicators were calculated based
on the literature data. MT content in individual products, according to different authors,
widely varies depending on many factors. We used a semi-quantitative scale to reduce
the effects of a wide range of factors on MT content in food. The study did not take into
account the influence of lifestyle factors, such as the level of physical activity, caloric intake,
coffee, and alcohol and nicotine consumption. This appeared to have reduced the accuracy
of the analysis of the relationship between FMT and indicators characterizing human CS.
Respondents were asked to fill out a questionnaire in which they indicated the frequency
of consumption of melatonin-containing foods over the past month. It should be taken
into account that this approach reduced the reliability of the collected data due to possible
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inaccuracies in the respondents’ recollection of their diet. Most of the study participants
(72.8%) were women. In this study, we did not take into account the influence of another
factor, the state of the reproductive function. It is known that there are significant changes
in sleep function and psychoemotional state in women during the menstrual cycle, asso-
ciated with changes in the production of sex hormones [49] and melatonin [50]. In the
future, it will be necessary to conduct a special study to take into account the influence
of the state of reproductive function on the association among studied indicators. The
cross-sectional design of our study did not allow us to judge causal relationships between
the studied indicators.

5. Conclusions

As a result of the study, it was found that higher consumption of melatonin-containing
foods per day is associated with early chronotype and less social jetlag, better sleep quality
and lower levels of depression, and central adiposity. Higher consumption of melatonin-
containing foods for dinner is associated with a lower risk of central adiposity. The
findings indicate that the potential chronobiotic effect of the diet may be partly due to
dietary melatonin.
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