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ARTICLE INFO ABSTRACT
Keywords: Introduction: Cardiovascular disease remains a leading cause of mortality worldwide, with atherosclerosis at its
Atherosclerosis core. Accurate identification of vulnerable plaques is critical for preventing acute cardiovascular events. While

Optical coherence tomography
Machine learning
Deep learning

optical coherence tomography (OCT) provides high-resolution imaging of plaque features, manual analysis is
labor-intensive and operator-dependent. This study addresses the need for automated, accurate segmentation of
Pl . atherosclerotic plaques in OCT pullbacks using advanced machine learning (ML) techniques.

aque segmentation
Cardiovascular diagnostics Methods: A comprehensive multi-center dataset of OCT pullbacks, encompassing 103 patients and annotated for
Automated imaging key plaque morphological features (lumen, fibrous cap, lipid core, and vasa vasorum), was used to tune, train and
Vulnerable plaque evaluate nine ML models, including U-Net, U-Net++, DeepLabV3, DeepLabV3-+, FPN, LinkNet, PSPNet, PAN,
and MA-Net. To address dataset imbalances and optimize performance for each plaque feature, we introduced a
hybrid segmentation strategy: single-class models were deployed for highly prevalent features (e.g., lumen) and
underrepresented classes (e.g., vasa vasorum), while a multi-class model targeted morphologically complex
features with overlapping boundaries (e.g., fibrous cap and lipid core). Hyperparameter tuning was performed
using Bayesian optimization, and segmentation accuracy was assessed with the Dice Similarity Coefficient (DSC)
and other metrics.
Results: The models achieved high segmentation accuracy for lumen (DSC: 0.987), fibrous cap (DSC: 0.736), and
lipid core (DSC: 0.751), demonstrating the potential of leveraging ML techniques to enhance OCT’s diagnostic
capabilities. While lumen segmentation showed exceptional precision, the moderate accuracy for fibrous cap and
lipid core highlights challenges with complex morphologies. Satisfactory results for vasa vasorum (DSC: 0.610)
suggest areas for further refinement. By integrating these models into a weighted ensemble, taking into account
class prevalence and model confidence, the combined system achieved a weighted DSC of 0.882 across all plaque
features, a significant improvement over individual models. These findings confirm the hybrid strategy’s ability
to balance computational efficiency with accuracy through rigorous optimization, tailored model selection, and
ensemble integration.
Conclusion: This study presents a robust ML-driven framework for automated OCT segmentation that uses a
hybrid approach and weighted ensemble learning to address class imbalance and feature complexity, signifi-
cantly improving the accuracy and efficiency of atherosclerotic plaque analysis. The findings suggest potential
clinical implications, including improved detection of high-risk plaques and enhanced decision-making in car-
diovascular care. However, further prospective validation is required before clinical adoption. Future research
should focus on expanding datasets, integrating multimodal imaging, and refining models for real-time clinical
use, paving the way for transformative advancements in cardiovascular diagnostics.
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1. Introduction

Atherosclerosis is a leading cause of cardiovascular morbidity and
mortality worldwide, underlying ischemic heart diseases such as
myocardial infarction, stroke, and peripheral arterial disease. It is
characterized by the accumulation of lipid-laden plaques in arterial
walls, which narrow the vessel lumen, impair blood flow, and increase
the risk of thrombotic events [1]. In 2021, ischemic heart disease,
largely driven by atherosclerosis, accounted for over 10 million deaths
globally, remaining the foremost cause of mortality across both devel-
oped and developing regions [2]. Despite progress in medical therapy
and revascularization, the incidence of atherosclerotic cardiovascular
diseases continues to rise, particularly in low- and middle-income
countries, underscoring the need for improved diagnostic and thera-
peutic strategies [3]. The clinical danger of atherosclerosis stems from
both progressive luminal obstruction and plaque instability [4]. While
some plaques remain asymptomatic, others are prone to rupture, trig-
gering acute coronary syndromes and stroke [5]. Plaque vulnerability,
encompassing inflammation, endothelial dysfunction, and lipid content,
contributes to their varied behavior [6]. In addition to established fea-
tures such as thin fibrous cap and large lipid core, recent evidence
highlights the role of neovascularization (specifically, the proliferation
of vasa vasorum) in promoting intraplaque inflammation and hemor-
rhage, both of which are implicated in plaque destabilization and
rupture [6,7]. Identifying rupture-prone plaques, therefore, increasingly
involves the assessment of both structural and microvascular features.

Intravascular imaging techniques such as intravascular ultrasound
(IVUS), optical coherence tomography (OCT), and near-infrared spec-
troscopy (NIRS) have become essential for diagnosing and managing
atherosclerosis [5,8]. These methods offer advantages over traditional
techniques like coronary angiography and coronary computed tomog-
raphy angiography, which, while valuable for assessing luminal steno-
sis, have limitations in detecting plaque composition and vulnerability
[9]. IVUS is useful for evaluating vessel wall morphology and remod-
eling, while OCT, with its superior resolution, is effective in visualizing
microstructures like fibrous caps and thrombus formation, playing a
pivotal role in percutaneous coronary interventions and plaque
vulnerability assessment [10]. NIRS complements these by identifying
lipid-core plaques, associated with increased cardiovascular risk [11].

Among these, intravascular OCT stands out for its high resolution,
offering tenfold better spatial resolution compared to IVUS, making it
ideal for visualizing thin fibrous caps, a key feature of plaque instability
and acute coronary syndrome risk [12]. Importantly, intravascular OCT
is an invasive imaging modality, as it requires catheterization to acquire
high-resolution images of the coronary arteries. Recent studies highlight
OCT’s ability to predict cardiovascular events by measuring fibrous cap
thickness and surface area, outperforming other modalities [13].
Moreover, ML-driven image analysis is enhancing OCT’s clinical utility,
automating the identification of vulnerable plaque features, and
reducing operator dependence [14].

Deep learning has emerged as a powerful tool for automating the
analysis of intravascular OCT data, enabling segmentation and classifi-
cation of plaque types such as calcified and lipid-rich areas. For instance,
Athanasiou et al. [15] introduced a fully automated methodology that
significantly reduced manual intervention in plaque detection. Simi-
larly, A-line-based classification by Zhu et al. [16] employed a deep
neural network to classify plaques with high accuracy, offering rapid
analysis of large datasets. Shi et al. [17] proposed a multi-task learning
model that achieved high precision in detecting thin-cap fibroather-
omas, a key indicator of plaque vulnerability.

Recent OCT studies have started to explore multi-tissue segmenta-
tion, yet each is constrained in one of three dimensions: dataset scale,
tissue breadth, or code availability. Lee et al. [18] reported automated
micro-vessel delineation in 30 patients (median DSC 0.73) but omitted
lumen and plaque tissues. Chu et al. [19] treated plaque characterization
as a classification problem, providing no pixel-wise masks. One main

Computers in Biology and Medicine 197 (2025) 111061

difference between our study and such prior work is the emphasis on
full-resolution tissue segmentation rather than classification alone,
enabling more precise and clinically interpretable analysis. More
recently, Wittmann et al. [20] proposed a simulation-based approach for
3D OCT angiography vessel segmentation, focusing on cerebral vascu-
lature without addressing coronary plaque components. Wang et al. [21]
introduced an attention-based network for segmenting hyperreflective
foci in retinal OCT images, targeting diabetic macular edema. However,
both studies did not consider comprehensive coronary plaque segmen-
tation or the inclusion of vasa vasorum. Our work is the first to combine
(i) an open, 103-patient multi-center dataset, (ii) four clinically relevant
classes, including the rarely annotated vasa vasorum, and (iii) public release
of models and code.

While prior studies have advanced OCT-based plaque analysis, crit-
ical gaps remain. Existing frameworks often prioritize classification over
detailed segmentation [16], rely on homogeneous datasets [22], or lack
computational efficiency for clinical deployment [23]. Our work ad-
dresses these limitations by introducing a hybrid segmentation frame-
work optimized for multi-center OCT data. This approach combines
task-specific models to balance class imbalance, leverages rigorous
hyperparameter optimization for efficiency, and integrates explain-
ability methods to enhance clinical trust. By focusing on both prevalent
(e.g., lumen) and rare (e.g., vasa vasorum) plaque features, our meth-
odology advances automated, generalizable plaque quantification.

2. Materials and methods
2.1. Data acquisition

To address the segmentation and quantification task, we collected a
multi-center, multi-scanner dataset that includes OCT pullbacks of
atherosclerotic plaques in blood vessels. Each OCT pullback represents a
3D volume with dimensions N x N x M, where N represents the height
and width of the image in pixels, and M denotes the number of slices,
capturing the depth of the OCT pullback. This comprehensive dataset
spans various institutions, imaging devices, and patient demographics,
making it ideal for training models capable of accurate and reliable
segmentation and quantification of atherosclerotic plaques across
diverse clinical settings. Below are the main characteristics of the
dataset:

e Institutions: Data were collected from two leading cardiovascular
research centers: Research Institute for Complex Issues of Cardio-
vascular Diseases (Kemerovo, Russia): 73 OCT pullbacks, and Tyu-
men Cardiology Research Center (Tyumen, Russia): 30 OCT
pullbacks. Each pullback represents a single intravascular OCT
acquisition and consists of cross-sectional slices.

e Scanners: The dataset includes OCT pullbacks acquired using two

generations of OCT systems from the same manufacturer lineage.

Specifically, the pullbacks were obtained using two systems: the

ILUMIEN Intravascular Imaging System and the OPTIS Next Intra-

vascular Imaging System, both marketed by Abbott. The use of both

systems introduces technical heterogeneity in imaging protocols,
supporting the model’s ability to generalize across different device
generations.

Data collection period: OCT pullbacks were collected over 1 year,

from June 30, 2022 to July 11, 2023, capturing temporal vari-

ability in imaging practices and patient characteristics.

e Gender distribution: The dataset comprises pullbacks from 77
male and 26 female patients, providing essential diversity for
analyzing sex-specific variations in atherosclerotic plaque
morphology.

e Image sizes: The height and width of the OCT slices vary between
704 x 704 pixels and 1024 x 1024 pixels, reflecting diverse
anatomical features and imaging conditions.
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e Image depth: The number of slices per OCT pullback ranges from
215 to 270, corresponding to the variable imaging depths employed
during diagnostic procedures.

The study adhered to the principles outlined in the Declaration of
Helsinki and received approval from the Local Ethics Committee of the
Research Institute for Complex Issues of Cardiovascular Diseases
(Kemerovo, Russia) under protocol code 2022/06 on June 30, 2022. All
participants provided written informed consent prior to inclusion in the
study.

Patients aged 18 years or older with stable coronary artery disease
undergoing cardiac catheterization were considered for inclusion. All
lesions exhibiting an angiographic diameter stenosis of 50-90%, as
determined by site visual estimation, were functionally assessed using
fractional flow reserve (FFR). Intermediate, non-flow-limiting lesions
(FFR > 0.80) underwent further evaluation via OCT. Flow-limiting le-
sions (FFR < 0.80) were treated with percutaneous coronary interven-
tion using drug-eluting stents. The main exclusion criteria were as
follows:

e Acute coronary syndrome.

e Prior coronary artery bypass grafting.
e Previously stented target lesions.

e Heavily calcified or angulated lesions.

The study cohort consisted of 103 patients with stable coronary ar-
tery disease, with a median age of 69 years (range: 43-83). Of these, 77
(74.7%) were male and 26 (25.3%) were female, reflecting the gender
distribution within the cohort. A significant portion of the cohort pre-
sented with comorbidities, including 22 (21.4%) patients with diabetes
and a history of myocardial infarction.

Clinical presentations varied, with the majority of patients (94,
91.3%) experiencing angina pectoris classified as functional classes 1-3,
while a smaller group (9, 8.7%) exhibited silent ischemia. These diverse
patient characteristics, summarized in Table 1, enhance the dataset’s
clinical relevance and provide a comprehensive basis for exploring the
variability in atherosclerotic plaque features.

2.2. Data annotation

After data collection, two cardiologists meticulously annotated 103
OCT pullbacks, represented by 25,698 slices, ultimately identifying four
plaque morphological features (PMFs) associated with distinct patterns
of atherosclerotic plaque development: lumen, fibrous cap, lipid core,
and vasa vasorum. Each identified PMF was annotated using binary
masks as illustrated in Fig. 1. The OCT annotations were conducted
using the web-based computer vision platform, Supervisely [24].

Following the initial annotation, the labeled slices were reviewed
and double-verified by a senior cardiologist and a technical specialist
responsible for dataset preparation to ensure the accuracy and reliability

Table 1
Baseline characteristics of patients included in the study.
Parameter Value
Sex:
Male, n (%) 77 (74.7)
Female, n (%) 26 (25.3)
Median age, years [min — max] 69 [43-83]
Arterial hypertension, n (%) 92 (89.3)
Diabetes mellitus, n (%) 22 (21.4)
Myocardial infarction, n (%) 22 (21.4)
Polyvascular disease, n (%) 29 (28.2)
Angina pectoris:

Silent ischemia, n (%) 9(8.7)
Functional class 1, n (%) 24 (23.3)
Functional class 2, n (%) 55 (53.4)
Functional class 3, n (%) 15 (14.6)
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Table 2
Hyperparameters used during the networks’ optimization.
Hyperparameter Value Count
Architecture U-Net, U-Net++, DeepLabV3, DeepLabV3+, FPN, 9
LinkNet, PSPNet, PAN, MA-Net
Encoder ResNet-18, ResNet-50, ResNet-101, EfficientNet BO, 9

EfficientNet B5, EfficientNet B7, RegNetX-200MF,
RegNetX-6.4 GF, RegNetY-12GF

Input size 512x512 to 896x896 with the step of 128x128 px 4
Optimizer Adam, RAdam, RMSprop 3
Learning rate 107%,107%,1075,107° 4

of the annotations. This verification process involved adjustments or
corrections to the annotations, further enhancing their precision and
consistency.

The features described during the annotation of OCT slices represent
key morphological characteristics of atherosclerotic plaques. These
features are critical for understanding plaque composition and its clin-
ical implications, particularly in assessing the risk of cardiovascular
events. The following four PMFs were segmented and quantified:

1. Lumen (LM): This feature involves measuring the dimensions of the
vascular lumen, which is crucial for evaluating stenosis and blood
flow. Accurate lumen quantification helps assess the severity of
vascular obstructions and guide clinical decision-making.

2. Fibrous cap (FC): This feature pertains to the fibrous cap’s thickness
and structure. The fibrous cap plays a significant role in plaque
vulnerability, and its analysis is essential for predicting the likeli-
hood of plaque rupture and potential cardiovascular events.

3. Lipid core (LC): The lipid core is characterized by high lipid content
within the plaque. Quantifying the lipid core is a key indicator of
atherosclerotic activity and helps to assess the likelihood of high-risk
plaques, which can lead to serious conditions such as myocardial
infarction.

4. Vasa vasorum (VV): The “vasa vasorum” feature was defined to
include all microvessels and microchannels visible within the vessel
wall and atherosclerotic plaque on OCT images, irrespective of their
precise anatomical location. This encompasses both classical vasa
vasorum, which are typically located in the adventitia and outer
media, and neovessels arising within the intima and atherosclerotic
plaque (sometimes referred to as “vasa plaquorum”). This inclusive
definition was adopted to reflect the full spectrum of micro-
vascularization associated with atherosclerotic disease, recognizing
that OCT imaging may not reliably distinguish between these sub-
types. The presence, density, and distribution of such microvessels
are increasingly recognized as indicators of intraplaque neo-
vascularization, inflammation, and heightened risk of plaque
rupture. Accordingly, quantification of these microvessels provides
valuable complementary information for assessing plaque vulnera-
bility and the biological activity underlying atherosclerotic
progression.

All identified PMFs play an essential role in understanding the
structure and progression of atherosclerotic disease. Each feature pro-
vides critical insight into different aspects of plaque composition,
influencing the clinical assessment of plaque stability and the risk of
cardiovascular events. The vascular lumen reflects the degree of steno-
sis, affecting blood flow, while the fibrous cap, lipid core, and vasa
vasorum are important markers for evaluating plaque vulnerability.

In the context of OCT imaging, these features are segmented and
quantified to offer detailed visualization and measurement of plaque
composition. This enables a comprehensive analysis of the plaques’
morphology, aiding in the diagnosis and prognosis of atherosclerotic
disease progression. By focusing on the segmentation of these PMFs,
OCT provides a precise, invasive method to investigate the structural
characteristics of plaques and predict potential cardiovascular risks.


https://supervisely.com/
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(a) Input slice
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(b) Segmentation mask

Fig. 1. Annotation methodology for optical coherence tomography slices depicting plaque morphological features associated with atherosclerotic plaque devel-
opment. The feature annotations delineated with segmentation masks include the lumen (pink), fibrous cap (blue), lipid core (green), and vasa vasorum (red).

2.3. Model selection

To segment the four classes in OCT slices, we evaluated nine different
neural networks: U-Net [25], U-Net++ [26], DeepLabV3 [27], Deep-
LabV3+ [28], FPN [29], LinkNet [30], PSPNet [31], PAN [32] and
MA-Net [33]. These models were chosen based on their established ef-
ficacy in analyzing complex biomedical images [34].

U-Net, widely applied in biomedical image segmentation, is built on
an encoder-decoder architecture that excels at capturing fine details
[25]. Its ability to isolate small structures, such as calcified plaques and
fibrous caps, makes it ideal for OCT image segmentation. U-Net’s
frequent use in related studies further solidifies its role as a baseline
model [18,19]. U-Net++ enhances this with densely connected skip
pathways, improving feature propagation and making it particularly
effective for segmenting small, delicate structures like microvessels and
thin fibrous caps, critical in OCT imaging, where precision is essential.

DeepLabV3 uses atrous convolution to extract features at multiple
resolutions without downsampling, maintaining important details in
OCT images [35]. This is crucial for accurately segmenting intricate
structures such as lipid cores and calcifications. DeepLabV3+ further
improves this model with a refined decoder, enhancing object boundary
segmentation — essential for identifying small features like fibrous caps
[36]. In similar studies, DeepLabV3+ has shown strong performance,
achieving a sensitivity of 85.8% and a high A-line Dice coefficient of
0.837 in lipid plaque detection, along with a mean Dice score of 0.73 +
0.10 for microvessel segmentation [18].

Feature Pyramid Network (FPN) excels at capturing multi-scale
features, making it well-suited for segmenting and quantifying athero-
sclerotic plaques in OCT images [37]. By employing pyramidal feature
hierarchies, FPN captures both global and fine-scale information,
improving segmentation accuracy in cardiological imaging [38]. FPN
has also demonstrated rapid convergence in similar segmentation tasks,
such as microvascular feature detection in tissue-engineered vascular
grafts [39].

LinkNet offers a streamlined architecture that balances computa-
tional efficiency with detailed feature extraction, making it suitable for
real-time applications in OCT imaging. Its design allows for the rapid
processing of high-resolution images while preserving the fine details
needed to accurately segment complex plaque structures. In specific
plaque segmentation tasks, LinkNet-34 has outperformed other models
like FPN and U-Net [40].

PSPNet introduces a pyramid pooling module to aggregate multi-
scale contextual information, making it highly effective for segment-
ing heterogeneous structures in OCT, such as thin fibrous caps and large
calcifications [31]. PSPNet also demonstrated competitive convergence
speeds in previous studies, ranking second only to FPN [39].

Pyramid Attention Network (PAN) combines pyramid pooling with
attention mechanisms, capturing both local and global contexts. This
dual mechanism ensures precise segmentation of small, critical features
like microvessels and fibrous caps, which are vital in OCT imaging [41].

Lastly, Multi-Attention Network (MA-Net) employs multi-scale
attention mechanisms, allowing it to capture fine details while main-
taining broad contextual understanding. This makes MA-Net particu-
larly effective for segmenting complex cardiovascular structures in OCT.
Its successful application in IVUS image segmentation further supports
its suitability for this task [42].

Overall, the selection of these nine models represents a compre-
hensive approach to addressing the specific challenges of OCT image
segmentation. Each model brings distinct strengths in handling local and
global features, preserving image resolution, and processing complex
anatomical structures. This diversity in architecture provides a solid
foundation for comparison and optimization, ensuring that the most
suitable model can be identified for future advancements and clinical
integration.

2.4. Model design

The design of the segmentation models was motivated by the non-
uniform distribution of PMFs within the dataset and the distinct char-
acteristics of each class. As detailed in Table 3, lumen objects are the
most prevalent, comprising 21,808 instances, followed by fibrous cap
(7226 instances) and lipid core (7192 instances). In contrast, the vasa
vasorum class is significantly underrepresented, with only 450
instances.

The relatively low number of vasa vasorum instances in our dataset
reflects primarily biological constraints. Vasa vasorum are small
microvessels that are infrequently present in coronary OCT images,
particularly in cases of stable coronary artery disease and in the absence
of pronounced neovascularization. Clinical experience indicates that

Table 3
Slice and plaque morphological feature distributions across folds and subsets.

Fold  Subset LM FC LC 'A% Total objects ~ Total slices

1 Train 17264 5610 5576 328 28778 16901
Test 4544 1616 1616 122 7898 4492

2 Train 17554 5709 5690 237 29190 17207
Test 4254 1517 1502 213 7486 4186

3 Train 17220 5600 5565 407 28792 16962
Test 4588 1626 1627 43 7884 4431

4 Train 17813 5724 5686 416 29639 17473
Test 3995 1502 1506 34 7037 3920

5 Train 17381 6261 6251 412 30405 17029

Test 4427 965 941 38 6371 4364
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when neovascularization is present, vasa vasorum can be clearly visu-
alized and reliably identified on OCT. However, such cases were un-
common in our cohort. Despite their rarity, vasa vasorum were included
in the segmentation task due to their emerging clinical relevance as
markers of plaque inflammation and vulnerability.

This imbalance poses unique challenges for segmentation tasks, as
model performance can be biased toward more abundant classes while
underperforming on rare ones. To address these challenges, we adopted
a hybrid segmentation strategy tailored to the specific distribution and
morphological complexity of each PMF:

e Lumen segmentation: Leveraging its high representation in the
dataset, a single-class model was trained exclusively for lumen.

e Fibrous cap and lipid core segmentation: These two classes, while
moderately represented, share morphological similarities, such as
complex and overlapping boundaries. A two-class model was tuned
and trained to improve segmentation accuracy for both features.

e Vasa vasorum segmentation: The rarity of this class necessitated a
dedicated single-class model to enhance performance by focusing
solely on the specific characteristics of vasa vasorum.

This targeted approach allows for better handling of class imbalance,
ensuring that each segmentation network is optimally configured for its
respective PMF. By isolating segmentation tasks and aligning model
designs with class distributions, we mitigate the inherent challenges
posed by imbalanced datasets while improving segmentation accuracy
across all classes. For the final ensemble, we trained three specialized
models: a binary model for lumen segmentation, a binary model for vasa
vasorum segmentation, and a two-class model for simultaneous seg-
mentation of fibrous cap and lipid core. In contrast, the baseline multi-
class model was trained to predict all four classes simultaneously within
a single network. This distinction allowed us to address class imbalance
and morphological complexity more effectively.

3. Hyperparameter tuning strategy

To achieve high-quality segmentation, we meticulously optimized
the segmentation networks. Given the challenges posed by dataset
imbalance, we curated specific datasets tailored to each segmentation
task, transforming the overall problem into distinct binary and two-class
segmentation subtasks. For each model, we conducted an extensive
search over 350 hyperparameter configurations, optimizing architec-
tural and training components. This rigorous process ensured optimal
performance for each class-specific segmentation task.

Due to the substantial computational demands associated with
hyperparameter optimization across multiple deep learning architec-
tures and segmentation tasks, hyperparameter tuning was performed on
a truncated dataset comprising 40 patients. This subset was selected
using stratified random sampling to ensure that the distribution of key
plaque morphological features (lumen, fibrous cap, lipid core, and vasa
vasorum) closely reflected that of the entire cohort. This approach was
intended to maintain the representativeness of the tuning dataset while
enabling feasible optimization. The optimal hyperparameters identified
using this subset were subsequently applied to model training on the
complete dataset of 103 patients, with comparable performance
observed across all plaque features.

Our tuning process aims to maximize the segmentation score, spe-
cifically focusing on the Dice Similarity Coefficient. To achieve this goal,
we utilize a DSC loss, which is calculated as follows:

22 (.ytrue ><.)'pred) +e&

(@]
Zytme + Zypred +¢€

Loss=1 —

where yuye and yprq represent the true and predicted label values,
respectively, and ¢ is a small constant (set to 1077 in our case) for nu-
merical stability to avoid zero division errors.
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As hyperparameter priorities vary during tuning, and -certain
hyperparameters have a more significant impact on network perfor-
mance than others [43], we focused our hyperparameter tuning efforts
on specific aspects rather than trying to optimize every parameter. In
particular, we did not tune hyperparameters such as batch size,
nonlinearity type, optimizer options, or kernel sizes. Instead, we focused
on hyperparameters that were shown to be important in our previous
study [34], namely encoder architecture, input image size, optimizer
selection, and learning rate. In Table 2, we provide a comprehensive
summary of the hyperparameters explored during the tuning process,
along with the corresponding values used.

Regarding the hyperparameter search strategy, we employed
Bayesian search, which, unlike Random or Grid Search, makes informed
decisions. Bayesian optimization utilizes a probabilistic model to
determine which values to use through an iterative process of testing
values on a surrogate function before evaluating the objective function.
Additionally, we utilized a specific early termination strategy, Hyper-
Band [44], to halt poorly performing configurations. When early
termination occurs, HyperBand stops the current configuration before
proceeding with a new set of hyperparameter values. The combination
of Bayesian optimization and HyperBand early termination forms a
so-called “BOHB” [45], an approach that offers higher computational
efficiency and robustness compared to Grid Search, Random Search, or
standard implementations of Bayesian optimization or HyperBand.

3.1. Model training strategy

Following hyperparameter tuning, the segmentation networks were
trained on the entire dataset using the identified optimal configurations.
The training strategy leverages specialized networks to align with the
segmentation approach:

o Single-class binary models were employed for lumen and vasa
vasorum, targeting their distinct distributions and characteristics.

o A two-class model was used for fibrous cap and lipid core, leveraging
their shared features and moderate representation in the dataset.

This strategy recognizes the unique demands of each PMF and en-
ables the models to focus on their specific segmentation challenges. By
dedicating a separate network to each segmentation task, we improved
boundary delineation and overall segmentation accuracy, particularly
for the less represented classes.

Given the limited number of subjects studied, comprising 103 pa-
tients (OCT pullbacks), we employed a 5-fold cross-validation tech-
nique. In this approach, each fold involved approximately 80% of the
OCT pullbacks for training and the remaining 20% for testing (Table 3
and Fig. S1 of the Supplementary Information). This partitioning scheme
was consistently applied to maintain the integrity of subject groups
within each subset. Cross-validation was performed on a patient-wise
basis, ensuring that no slices from the same patient appeared in both
training and test sets. This approach prevented any form of data leakage
and ensured the integrity of model evaluation.

During both the tuning and training steps, we employed a set of
augmentation transformations using the “Albumentations” library [46].
These augmentations not only allowed us to expand the dataset size but
also served as a regularization technique, helping to mitigate overfitting
during model training. The proposed augmentation workflow encom-
passes the following transformations:

e Horizontal flip with a probability of 50%.

o Shift, scale, and rotate with a probability of 20%: Allows for random
shifts, scaling, and rotations within specified limits (shift limit =
0.0625, scale limit = 0.1, and rotate limit = 15).

e Random crop with a probability of 20%: A random-sized crop is
applied with dimensions determined by a percentage of the input
size, ranging from 0.8 to 0.9 times the input size.
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e Conditional Padding. All slices are padded to ensure a consistent size
for processing.

e Gaussian noise with a probability of 20%: Adds random noise to the
images with a variable intensity range, where the variance ranges
from 3 to 10.

e Perspective distortion with a probability of 20%: Applies random
perspective transformations to the images with a scale of 0.05-0.1.

e Random brightness and contrast adjustment with a probability of
20%: Adjusts the brightness and contrast of the images within
specified limits (brightness limit = 0.2, contrast limit = 0.2).

e Hue, saturation, and value adjustment with a probability of 20%:
Shifts the hue, saturation, and value of the images within specified
limits (hue shift limit = 20, saturation shift limit = 30, value shift
limit = 20).

In contrast to the tuning step, where a fixed batch size of 4 was
utilized, the training step did not employ a fixed batch size. Since the
studied models vary in complexity, they require different amounts of
memory for training with a fixed batch size. Therefore, to ensure equi-
table training conditions, we adjusted the batch size based on the GPU
memory utilization. Specifically, each model was trained with a batch
size that allocated approximately 90-100% of GPU memory.

The network training, tuning, and testing were performed on a
desktop computer featuring a 16-core Intel Xeon Gold 6326 CPU @ 2.90
GHz, 128 GB of RAM, and an Nvidia A100 GPU with 40 GB of video
memory. PyTorch v2.2 and Python v3.11 were utilized as the primary
machine learning framework and language for network development,
respectively.

3.2. Ensemble framework

Before finalizing our hybrid ensemble approach, we trained a single
multi-class segmentation model to jointly predict all four tissue types
(lumen, fibrous cap, lipid core, and vasa vasorum) using the same ar-
chitecture and data pipeline. This baseline yielded suboptimal results.
The strong imbalance in both pixel count and instance frequency,
particularly the dominance of the lumen class, caused the model to
disproportionately prioritize lumen segmentation. As a result, it pro-
duced acceptable Dice scores for the lumen but substantially lower
performance for the remaining tissues. Fibrous cap and lipid core re-
gions were segmented inconsistently, and vasa vasorum was frequently
missed or misclassified. This imbalance-related bias motivated our de-
cision to train anatomically distinct models and combine them using a
weighted ensemble strategy.

To further enhance segmentation accuracy and address class imbal-
ance, we implemented a weighted ensemble framework that integrates
predictions from the best-performing models for each PMF. For each
pixel, the final class assignment was determined by maximizing a
weighted sum of the predicted probabilities:

¥(x) = argmax(w, - pe(x)) @

where p.(x) is the predicted probability for class c at pixel x, w, is a
composite weight reflecting both the prevalence of class c in the training
data and the model’s confidence, measured by the mean Dice Similarity
Coefficient (DSC) for class ¢ on the validation set.

This approach prioritizes the accurate detection of rare classes while
leveraging the strengths of individual models. The weights w. were
empirically determined as:

Y DSC,
" log(1 + prevalence,)

3

where DSC, is the mean Dice score for class ¢, and prevalence, is the
proportion of pixels belonging to class c¢ in the training set. This
formulation is designed to optimize segmentation performance by
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balancing model confidence with class frequency, thereby enhancing the
detection of underrepresented features such as vasa vasorum. Impor-
tantly, the ensemble weights are not intended to reflect the clinical risk
associated with each feature (e.g., fibrous cap thickness or lipid core
size), but rather to maximize overall segmentation accuracy. Clinical
interpretation and risk stratification based on the segmented features are
subsequent steps that can be performed using the quantitative outputs of
our framework.

3.3. Model explainability

To ensure thorough model validation, we conducted an additional
investigation focused on assessing the explainability of our models. In
this context, we employed various methods of class activation mapping
(CAM), including GradCAM [47], HiResCAM [48], GradCAMElement-
Wise [49], GradCAM++ [50], XGradCAM [51], EigenCAM [52],
EigenGradCAM, and LayerCAM [53]. These techniques were specifically
aimed at analyzing the last layer of the encoder of the considered
models.

To gain deeper insights into the decision-making process of the
model and validate its predictive capabilities, we utilized the following
explainable Al methods:

e GradCAM: A gradient-based method that identifies crucial regions of
an image for classification based on activation gradients.
HiResCAM: A high-resolution version of GradCAM designed for more
precise delineation of activation regions.

GradCAMElementWise: A variation of GradCAM that considers the
influence of each pixel on the final prediction.

GradCAM++: An enhanced version of GradCAM that considers both
positive and negative activation gradients.

XGradCAM: An extended version of GradCAM that utilizes additional
features to improve the accuracy of important region detection.
EigenCAM: A method based on eigenvalue algorithms to determine
important image regions.

EigenGradCAM: A variation of EigenCAM that also considers acti-
vation gradients to improve the accuracy of important region
determination.

LayerCAM: A method that analyzes activations in different layers of
the model to identify important image features.

These methods provided invaluable insights into the inner workings
of our models, illuminating the regions of interest identified during the
segmentation process. This examination of model explainability bolsters
our confidence in the reliability and interpretability of the segmentation
results generated by our networks.

4. Results
4.1. Hyperparameter tuning

A comprehensive hyperparameter tuning process was conducted for
each studied PMF, as outlined in the Hyperparameter tuning strategy
section. This involved the evaluation of 350 network configurations per
model (1050 configurations in total). The main results are summarized
below, in Table 4, and in Table S1-S3 of the Supplementary Information:

e Tuning time: The duration of the tuning process varied significantly
across different PMFs. Fibrous cap and lipid core segmentation
required the longest tuning time, consuming 712 h, which likely
reflects the complexity of these particular classes. In comparison, the
lumen segmentation model completed its tuning in 309 h. Vasa
vasorum segmentation, having a smaller dataset, exhibited the
shortest tuning time at 103 h. It should be noted that these reported
times correspond to the total cumulative runtime required to eval-
uate all 350 network configurations for each plaque morphological
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Table 4
Optimal hyperparameters for the studied plaque morphological features.

Lumen Fibrous cap & Lipid core Vasa vasorum
Architecture U-Net++ LinkNet U-Net
Encoder ResNet-101 EfficientNet B7 RegNetX-6.4 GF
Input size 512x512 896x896 896x896
Optimizer RMSprop RMSprop RAdam
Learning rate 10° 10° 108
Parameters, M 68.0 64.4 31.9
MAGs, G 249.8 9.0 158.0
Precision 0.991 0.700 0.814
Recall 0.993 0.977 1.000
F1 0.989 0.617 0.784
ToU 0.979 0.488 0.695
DSC 0.989 0.617 0.784

feature during hyperparameter optimization. In the supplementary
materials (Table S1-S3), we present only the optimal configurations
for each class and network architecture, along with their individual
runtimes. The full set of tested configurations and their respective
runtimes are available in our GitHub repository for full transparency
(see Data availability).

Model Performance. The segmentation performance of each model
was evaluated using several metrics, including precision, recall, F1
score, Intersection over Union (IoU), and Dice Similarity Coefficient.
These metrics were computed on the truncated dataset of 40 patients
used exclusively for model tuning to reflect performance during the
fine-tuning phase. U-Net++ achieved the highest DSC of 0.989 for
lumen segmentation, demonstrating nearly ideal agreement between
predicted and ground truth segmentations. For fibrous cap and lipid
core segmentation, LinkNet attained a DSC of 0.617, indicating
moderate accuracy on average. Finally, U-Net performed relatively
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well in vasa vasorum segmentation, with a DSC of 0.784, reflecting a
good level of accuracy for this smaller dataset.

Model Complexity: Model complexity was assessed based on the
number of parameters and multiply-accumulate operations (MACs).
U-Net++, used for lumen segmentation, had 68 million parameters
and required 249.8 GMACs of computational power. LinkNet,
employed for fibrous cap and lipid core segmentation, had 64.4
million parameters and exhibited the lowest computational load,
requiring only 9.0 GMACs. In contrast, U-Net, applied to vasa vaso-
rum segmentation, had the smallest number of parameters at 31.9
million and required 158 GMAGCs.

Overall, the results underscore the variability in model performance
and computational complexity across different segmentation tasks. U-
Net+-+ exhibited superior performance in lumen segmentation, while
LinkNet and U-Net demonstrated robustness for fibrous cap, lipid core,
and vasa vasorum segmentation. These findings highlight the trade-offs
between model accuracy and complexity, emphasizing the need for task-
specific optimization in plaque segmentation.

4.2. Model training

We conducted a comprehensive evaluation of the training dynamics
for the top-performing models selected during the hyperparameter
tuning phase: U-Net++ for lumen segmentation, LinkNet for fibrous cap
and lipid core segmentation, and U-Net for vasa vasorum segmentation.
These models were trained for 125 epochs using a 5-fold cross-validation
strategy to ensure robust performance assessment. This cross-validation
setup allowed us to track trends in the loss function and DSC over epochs
for each PMF, ensuring detailed monitoring of convergence behavior
(refer to Fig. 2).

The lumen, fibrous cap and lipid core segmentation models exhibited
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Fig. 2. Comparative analysis of loss and DSC evolution during training and testing phases over 5-fold cross-validation with 95% confidence intervals.
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a clear and consistent reduction in loss accompanied by progressive
improvements in the DSC, indicative of effective learning and precise
refinement of segmentation predictions. Conversely, the vasa vasorum
model demonstrated a slower convergence rate, coupled with significant
fluctuations in loss and DSC values. These variations underscore the
inherent complexity and challenges associated with segmentation of this
PMF.

To systematically assess convergence, we defined stabilization points
(refer to Fig. 2) for the loss function and DSC where incremental im-
provements were minimal. U-Net++ (lumen segmentation) and LinkNet
(fibrous cap and lipid core segmentation) achieved stabilization rapidly,
requiring fewer epochs to reach high DSC values with minimal loss
variability. In contrast, U-Net (vasa vasorum segmentation) exhibited
protracted convergence and less stable training curves, indicating
challenges in learning fine-grained features in this PMF. Such fluctua-
tions reflect the structural complexity and variability of the vasa vaso-
rum, which likely require more nuanced feature extraction and
aggregation.

The observed disparities in convergence behavior can be attributed
to several factors, including architectural variations among the models,
differences in parameter initialization, and the intrinsic segmentation
difficulty of each PMF. For instance, the vasa vasorum model faced
challenges in capturing subtle morphological features, requiring longer
training times and advanced architectural mechanisms for effective
feature learning.

The evaluation of segmentation performance metrics reveals varying
levels of accuracy across the PMFs assessed (refer to Table 5 and Fig. 3).
The lumen segmentation model exhibits exceptional performance,
achieving a DSC of 0.987 and an IoU of 0.975. These metrics underscore
the model’s ability to reliably and accurately delineate lumen structures,
highlighting its robustness and suitability for clinical applications
requiring precise segmentation. In contrast, the fibrous cap and lipid
core model demonstrate reliable performance, with DSCs of 0.736 and
0.751, respectively. These results reflect the effectiveness of the model
in capturing the intricate and complex boundaries of these structures,
despite the inherent challenges posed by their morphology. The vasa
vasorum model shows moderate performance, achieving a DSC of 0.610.
While segmentation of this feature remains challenging due to its subtle
and less distinct boundaries, the results indicate progress in addressing
these complexities.

To establish the upper bound of segmentation performance, we
assessed the inter-annotator agreement between two expert cardiolo-
gists on a representative subset of the dataset. The DSC for each plaque
morphological feature was as follows: lumen, 0.985; fibrous cap, 0.844;
lipid core, 0.815; and vasa vasorum, 0.693. These values represent the
expected range of human-level agreement and provide a benchmark for
interpreting the model’s performance.

By integrating these task-specific models into a weighted ensemble
framework — which accounts for class prevalence and model confidence
— the combined ensemble achieved a weighted DSC of 0.882 across all
PMFs. To assess the effectiveness of the proposed weighted ensemble,
we compared its performance with two naive aggregation strategies: (1)
majority voting, where each pixel is assigned the class predicted by the
majority of models, and (2) unweighted averaging, where class proba-
bilities are averaged across models and the class with the highest mean
probability is selected. As shown in Table 6, our weighted ensemble

Table 5
Segmentation performance metrics for each plaque morphological feature,
averaged over 5 folds during cross-validation.

PMF Precision Recall F1 IoU DSC
Lumen 0.986 0.988 0.987 0.975 0.987
Fibrous cap 0.737 0.784 0.736 0.608 0.736
Lipid core 0.815 0.772 0.751 0.639 0.751

Vasa vasorum 0.664 0.630 0.610 0.511 0.610
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consistently outperformed both naive methods, particularly for the vasa
vasorum class (DSC: 0.610 vs. 0.541 for majority voting and 0.552 for
unweighted averaging), and achieved the highest overall weighted DSC
(0.882 vs. 0.864 and 0.867, respectively). This represents a significant
improvement over individual models, demonstrating the ensemble’s
ability to harmonize diverse architectural strengths and mitigate class
imbalance challenges inherent in heterogeneous plaque characteriza-
tion. It should be emphasized that the ensemble weighting strategy is
optimized for segmentation accuracy and does not directly encode
clinical vulnerability criteria. The clinical significance of features such
as lumen size, lipid core area, or fibrous cap thickness is assessed in
downstream analyses, leveraging the accurate and comprehensive seg-
mentation provided by our ensemble framework.

4.3. Model visual assessment

To assess segmentation accuracy visually, we present three repre-
sentative slices that illustrate the segmentation outputs for the plaque
morphological features (Fig. 4). These slices display predictions gener-
ated by the optimal ensemble of models: U-Net++ for lumen segmen-
tation, LinkNet for fibrous cap and lipid core segmentation, and U-Net
for vasa vasorum segmentation. The predictions are juxtaposed with
their corresponding ground truth annotations, allowing for a direct vi-
sual evaluation of model performance.

As depicted in Fig. 4, the segmentations of lumen and vasa vasorum
exhibit strong alignment with the ground truth, underscoring the en-
semble’s effectiveness in delineating these features. However, subtle
discrepancies are occasionally observed in the fibrous cap and lipid core
segmentations. These challenges are likely attributable to the more
complex structure and morphology of these features, which differ
significantly from those of lumen and vasa vasorum. Both fibrous cap
and lipid core are components of tissue with diffuse and intricate
boundaries, making precise delineation more difficult. In contrast,
lumen and vasa vasorum typically exhibit clearer and more distinct
borders, facilitating their segmentation.

It is important to note that, while the segmentation of the lumen and
major plaque features demonstrates high accuracy, the delineation of
the outer vessel wall remains suboptimal. This limitation is primarily
attributable to the intrinsic characteristics of OCT imaging, most notably
its limited penetration depth, which often precludes visualization of the
vessel wall beneath atherosclerotic plaques and thus the true outer
boundary of the plaque. In the majority of cases, the outer boundary
cannot be reliably identified on OCT. Consequently, our annotation
protocol required annotators to segment either along the frame
boundary or by extrapolating the visible medial layer from adjacent
regions. This necessary but pragmatic approach introduces subjectivity
and interobserver variability, further constraining the achievable seg-
mentation quality at the vessel periphery. Moreover, as the outer wall
was not explicitly annotated as a separate class in our dataset, its
identification relies on the inferred boundaries of other segmented fea-
tures. Future work will address these limitations by incorporating
explicit outer wall annotation and leveraging multimodal imaging to
improve boundary definition.

The fibrous cap, in particular, is a thin layer of fibrous tissue over-
laying a lipid core, and its boundary can vary significantly in texture and
thickness. Meanwhile, the lipid core’s irregular geometry and frequent
embedding within surrounding tissue further complicate its segmenta-
tion. These intrinsic structural challenges likely contribute to the
observed differences in segmentation accuracy. These visual compari-
sons complement the quantitative performance metrics and provide
critical insights into the specific areas where improvements are needed.
Additional visualization of model predictions, highlighting their per-
formance on various plaque morphological features, is available in
Fig. S1 of the Supplementary Information.
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Table 6

Comparison of ensemble strategies for segmentation performance (DSC values).

Method Lumen Fibrous Cap Lipid Core Vasa Vasorum Weighted DSC
Majority Voting 0.985 0.701 0.729 0.541 0.864
Unweighted Averaging 0.986 0.713 0.735 0.552 0.867
Weighted Ensemble 0.987 0.736 0.751 0.610 0.882

4.4. Model explainability and class activation mapping analysis

To evaluate the interpretability of the segmentation models and their
focus on relevant plaque morphological features, multiple CAM methods
were applied, including GradCAM, GradCAM++, HiResCAM, Layer-
CAM, and others. In the main body of this article, we present compar-
ative class activation maps for the largest and smallest regions: the
lumen (Fig. 5) and the vasa vasorum (Fig. 6). These examples demon-
strate the variability in CAM algorithm performance across features with
differing sizes and complexities. Further examples of comparative class
activation maps for different patients and each of the studied classes are
provided in Fig. S2-S5 of the Supplementary Information, offering a
broader evaluation of model performance.

The results for each plaque feature, as observed through CAM anal-
ysis, are summarized below:

e Lumen

o LayerCAM, HiResCAM, GradCAMElementWise, and Eigen-
GradCAM consistently demonstrated superior performance in
identifying lumen boundaries with high precision. These algo-
rithms effectively emphasized clear contours and minimized false
activations outside the lumen area, indicating robust feature
localization.

o GradCAM, GradCAM++, and XGradCAM exhibited moderate
performance. While they captured the general shape of the lumen,
occasional activations on image corners or background artifacts
reduced their reliability.

o EigenCAM underperformed, frequently misclassifying surround-
ing regions as part of the lumen, which detracted from its
interpretability.

e Fibrous cap

o LayerCAM, HiResCAM, GradCAMElementWise, and Eigen-
GradCAM excelled in highlighting the thin fibrous cap layer, a
critical feature for assessing plaque vulnerability. These methods
accurately delineated the fibrous cap boundaries, even in chal-
lenging cases with diffuse textures.

o GradCAM, GradCAM++, and XGradCAM provided average per-
formance, with outputs occasionally including spurious activa-
tions at image edges.

o EigenCAM performed poorly, often activating erroneously on lipid
core regions rather than the fibrous structure itself, undermining
its clinical relevance.

e Lipid core

o Segmentation of the lipid core proved challenging for all tested
algorithms. Weak or incorrect activations were observed across all
CAM methods, including GradCAM, HiResCAM, GradCAMEle-
mentWise, GradCAM+-+, XGradCAM, EigenCAM, EigenGradCAM,
and LayerCAM. Most CAM approaches for the lipid core incor-
rectly focused attention on the lumen, the fibrous cap, or vessel
regions immediately adjacent to the lumen. This was particularly
pronounced for GradCAMElementWise and EigenGradCAM,
which frequently activated erroneously at the boundary between
the lumen and lipid core or even within the lumen itself.

o This limitation is likely due to the lipid core’s intricate
morphology, unclear boundaries, and frequent proximity to the
vessel lumen, making accurate localization difficult even for
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Fig. 4. Comparison between ground truth segmentation and ensemble predictions.

advanced explainability methods. These findings highlight the
need for additional training or specialized optimization to improve
detection for this category.
e Vasa vasorum

o Most algorithms, except EigenCAM, performed adequately in
identifying the vasa vasorum. These methods correctly highlighted
the small, less distinct vascular structures with minor deviations.

o EigenCAM, however, exhibited significant misclassifications, often
activating in the lumen region where vasa vasorum structures
were absent, reducing its reliability for detecting smaller
anatomical features.

These activation maps validate the models’ focus on anatomically
relevant regions and provide a mechanism for identifying potential areas
of misclassification or ambiguity. Notably, LayerCAM and HiResCAM
demonstrated consistent performance in generating accurate visualiza-
tions across all plaque features, outperforming other methods due to
their ability to aggregate multi-scale activations and localize fine
structures (e.g., thin fibrous caps) with minimal false positives. Their
gradient-weighted attention mechanisms further suppress imaging ar-
tifacts inherent to OCT, such as speckle noise, while preserving critical
morphological details. By integrating these explainability methods into
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the segmentation pipeline, our analysis not only enhances confidence in
the models’ clinical applicability but also identifies opportunities for
optimization, such as refining feature boundaries in lipid-rich regions.

5. Discussion
5.1. Clinical relevance of plaque morphology in OCT

Current clinical guidelines recommend percutaneous coronary
intervention (PCI) exclusively for flow-limiting lesions or those impli-
cated in acute coronary syndromes [54]. However, vulnerable plaques,
whether flow-limiting or not, pose significant risks for future adverse
cardiac events even under optimal medical therapy [55]. Natural history
studies have demonstrated that characteristics such as large plaque
burden, reduced minimal lumen area, high lipid content, and thin
fibrous caps are strongly associated with lesion-specific cardiac events,
with risk escalating as the number of adverse features increases [56].

In addition to these established features, the role of vasa vasorum in
plaque vulnerability has garnered increasing attention. Neo-
vascularization within the plaque, reflected by increased vasa vasorum,
facilitates the influx of inflammatory cells and is a major contributor to
intraplaque hemorrhage, both of which are recognized mechanisms of
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Fig. 5. Comparative class activation maps for the lumen region in patient 032.

plaque destabilization [6,7]. Therefore, the inclusion of vasa vasorum as
a PMF in our study is supported by its emerging relevance in the path-
ophysiology of vulnerable plaques.

Interestingly, plaque vulnerability is dynamic; some vulnerable
plaques stabilize without clinical events, whereas stable plaques may
transition to a vulnerable state [57]. This evolving understanding has
spurred interest in preventive PCI for high-risk vulnerable plaques, with
the stenting mechanism hypothesized to stabilize plaques by covering
the fibrous cap and reducing the likelihood of rupture [58].

5.2. Segmentation versus alternative ML approaches

While classification approaches can detect the presence of vulnerable
plaque phenotypes such as thin-cap fibroatheromas (TCFAs), they do not
provide spatial localization or quantifiable information. Object detec-
tion serves as an intermediate approach, predicting bounding boxes
around regions of interest such as fibrous caps or lipid cores. This pro-
vides some localization while requiring less annotation effort than seg-
mentation; however, it remains limited to approximate spatial
delineation and cannot reliably capture fine morphological boundaries.

In contrast, segmentation delivers pixel-level anatomical detail that
is critical for clinical decision-making. TCFA diagnosis hinges on cap
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thickness <65 pm [59], which necessitates per-pixel precision. It also
enables visualization of fibrous cap contours, assessment of spatial
overlap with lipid cores, and calculation of volumetric plaque burden,
all essential for risk stratification, longitudinal monitoring, and
image-guided stenting. Additionally, segmentation facilitates the auto-
mated extraction of spatial biomarkers that can feed into prognostic or
predictive models. This granularity and quantification capacity make
segmentation uniquely suited to clinical workflows, whereas classifica-
tion and object detection provide only coarse or partial insights. A
structured comparison of these three approaches is presented in Table 7.

Table 7 underscores why segmentation is the most clinically valuable
framework for OCT-based plaque analysis. Unlike classification or object
detection, only segmentation provides the pixel-level detail required to
measure fibrous cap thickness, quantify lipid burden, and spatially co-
register features across serial imaging. These capabilities directly sup-
port interventional planning, longitudinal monitoring, and risk
modeling. While object detection may assist in preliminary localization,
and classification in broad risk categorization, neither offers the
anatomical fidelity or quantification necessary for therapeutic decision-
making. Segmentation, by contrast, delivers anatomically faithful,
reproducible, and clinically interpretable outputs aligned with real-
world workflows and predictive tools.
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Fig. 6. Comparative class activation maps for the vasa vasorum region in patient 001.

Comparative overview of classification, object detection, and segmentation approaches for OCT-based plaque feature analysis.

Criteria

Classification

Object Detection

Segmentation

Analytical scope
Model output
Spatial localization
Quantification capability

Annotation burden
Clinical interpretability

Relevance to PCI planning

Utility in risk modeling

Global (entire frame or image-level

decision)

Single class label per image (e.g.,
TCFA present/absent)
None (presence inferred without
anatomical mapping)
Absent

Minimal (image-level labeling)

Low (non-localized classification with

limited transparency)
Limited (no spatial guidance)

Binary predictors (e.g., TCFA
presence)

Localized region estimation using bounding
boxes
Bounding boxes with class labels for
candidate regions
Coarse localization (rectangular box
encloses feature)
Approximate region-level area estimation

Moderate (box-level labeling per feature)
Moderate (approximate localization with
limited boundary definition)
Modest (coarse region identification)

Semi-quantitative metrics (e.g., region
count or size)

Pixel-wise delineation of anatomical structures
Dense semantic mask with per-pixel class assignments

Precise anatomical boundary (enables cap thickness
and lipid area computation)
Exact measurement of thickness, area, and volume at
pixel-level resolution
High (manual per-pixel annotation required)
High (overlay visualization, direct anatomical
correspondence, and feature traceability)
High (accurate real-time anatomical mapping for
intervention planning)
Quantitative biomarkers (e.g., cap thickness, lipid
core burden, spatial distributions)

5.3. Advancing deep learning for automated OCT interpretation

Intravascular imaging holds significant promise for improving PCI
outcomes in patients with coronary artery disease. Methods such as OCT

and IVUS provide detailed visualization of vessel components and pla-
que morphology. However, discrepancies in image interpretation among
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experts complicate diagnostics and decision-making [59].
The integration of deep learning, particularly neural networks, is a
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rapidly advancing field that could address these challenges. Deep
learning models trained on intravascular imaging data can identify
morphological elements of the vascular wall and assess plaque vulner-
ability, reducing human error and expediting diagnostic workflows. For
instance, Jun et al. [60] explored various machine learning classifiers,
including convolutional neural networks (CNN), feed-forward neural
networks (FNN), K-nearest neighbor (KNN), and random forests (RF), to
classify TCFAs using IVUS images labeled with OCT. Their study of 12,
325 IVUS images reported AUC values of 0.911 for CNN, 0.859 for FNN,
0.848 for KNN, and 0.844 for RF, with CNN emerging as the most ac-
curate classifier. Interestingly, the feature importance rankings of FNN,
KNN, and RF closely aligned with physician diagnostic criteria, under-
scoring the potential of machine learning in replicating expert
decision-making [60].

In comparison, our study developed a deep learning solution for
automated segmentation and quantification of atherosclerotic plaques
in OCT pullbacks. Utilizing state-of-the-art deep learning architectures,
our models demonstrated high segmentation accuracy for key plaque
features: lumen (DSC: 0.987), fibrous cap (DSC: 0.736), and lipid core
(DSC: 0.751). Similarly, Bae et al. [61] demonstrated the potential of ML
models in TCFAs using OCT-derived data, achieving accuracies of 81%
with artificial neural networks and AUC values of 0.80, which are
comparable to the high segmentation accuracy observed in our study.

The findings highlight OCT’s synergy with machine learning for
accurately segmenting critical plaque features. Lumen segmentation
achieved near-perfect accuracy, reflecting the robustness of the model
for well-defined structures. Meanwhile, the moderate performance in
vasa vasorum segmentation (DSC: 0.610) observed in our study is
consistent with findings from other studies that have highlighted the
challenges of detecting subtle vascular structures in OCT images. For
example, Lee et al. reported similar difficulties in segmenting micro-
vessels, achieving a mean DSC of 0.73 + 0.10, underscoring the need for
further refinement in this area [18]. Our study advances this field by
employing a dedicated single-class model for vasa vasorum segmenta-
tion, which, while showing moderate results, indicates the necessity for
larger and more diverse datasets to improve performance.

The inter-annotator agreement analysis demonstrates that the model
achieves near-human performance for lumen segmentation and
reasonable accuracy for more challenging features such as the fibrous
cap, lipid core, and vasa vasorum. The observed gap between model and
human agreement for these features highlights the inherent difficulty of
manual annotation and the need for further methodological refinement.

Overall, our findings contribute to the growing body of evidence
supporting the integration of ML in OCT-based plaque analysis. The
study supports the hypothesis that advanced segmentation models,
optimized through rigorous hyperparameter tuning, can achieve a bal-
ance between computational efficiency and accuracy. The ensemble
approach, tailored to specific plaque features, effectively mitigated
dataset imbalances, thereby enhancing performance across features
with diverse prevalence rates. The superiority of the weighted ensemble
over naive aggregation methods underscores the importance of inte-
grating both class prevalence and model confidence in the final pre-
diction. While majority voting and unweighted averaging are
straightforward, they fail to account for the inherent class imbalance
and variability in model performance across different PMFs. Our
approach, by contrast, adaptively emphasizes underrepresented and
challenging classes, thereby improving clinical utility and robustness.

5.4. Study limitations

This study, while advancing the use of machine learning for OCT-
based segmentation, is subject to several limitations that must be
addressed to maximize its clinical and research impact. These limita-
tions include both technical challenges and constraints related to the
dataset and methodology:

Dataset imbalance and feature representation: The dataset used

13

Computers in Biology and Medicine 197 (2025) 111061

in this study exhibited a marked imbalance among plaque morpholog-
ical features, with vasa vasorum being particularly underrepresented.
This imbalance constrained the model’s ability to achieve high seg-
mentation accuracy for rare features, despite the use of targeted single-
class models and data augmentation. Future studies should aim to curate
larger, more balanced datasets, especially for features with emerging
clinical relevance.

Population representation: Although our dataset was collected
from multiple centers, all participating institutions were located in
Russia. This geographic limitation may restrict the generalizability of
our findings to populations with different genetic backgrounds, risk
factor profiles, or healthcare practices. Broader, multi-national collab-
orations are needed to validate and extend these results.

Model generalizability across imaging protocols: Variability in
OCT imaging protocols, scanner types, and acquisition parameters
across clinical sites may affect model performance when applied to
external datasets. While our multi-center approach partially mitigates
this issue, further validation on independent cohorts and standardized
imaging protocols is warranted.

Complexity of feature boundaries: The accurate segmentation of
features such as the fibrous cap and lipid core remains challenging due
to their diffuse, overlapping, or ambiguous boundaries in OCT images.
These challenges are compounded by the inherent resolution limits of
OCT and the subjective nature of manual annotation, as reflected in the
observed inter-annotator variability.

Potential overfitting and limited sample size: The observed dif-
ference in DSC values between the validation and test sets for the fibrous
cap, lipid core, and vasa vasorum may indicate overfitting, especially for
features with limited representation and complex morphology. While
our use of extensive data augmentation and 5-fold cross-validation helps
to mitigate this effect, the gap highlights the challenges posed by small
sample sizes and ambiguous boundaries. Future work will focus on
expanding the dataset, implementing advanced regularization strate-
gies, and exploring more robust model architectures to further improve
generalizability and reduce overfitting.

Computational demands: The training and optimization of deep
learning models, especially with extensive hyperparameter tuning,
required substantial computational resources. This may limit the im-
mediate clinical deployment of such models in resource-constrained
settings.

Model explainability and clinical interpretability: Although we
employed class activation mapping techniques to visualize model
attention and included attention-based architectures (e.g., PAN, MA-
Net), these methods provide only a partial understanding of the
model’s decision-making process. Specifically, CAM highlights regions
of interest but does not fully elucidate the complex, multi-layered
reasoning underlying segmentation predictions, particularly for fea-
tures with subtle or ambiguous boundaries. As a result, clinicians may
find it challenging to validate or trust automated outputs in critical
scenarios. Further research is needed to develop more transparent and
interpretable deep learning frameworks, such as transformer-based
models or inherently explainable architectures, that can offer mecha-
nistic insights and foster clinical confidence.

5.5. Future research directions

The following directions outline potential pathways to advance the
field of OCT processing and address the identified limitations:

Expansion and diversification of datasets: Efforts should focus on
assembling larger, more diverse datasets encompassing a wide range of
populations, imaging devices, and clinical scenarios. This will enhance
model robustness, reduce bias, and improve generalizability.

Standardization and external validation: Adoption of standard-
ized imaging protocols and external validation on independent, multi-
national cohorts are essential to ensure reproducibility and facilitate
clinical translation.
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Integration of multimodal imaging: Combining OCT with com-
plementary modalities such as intravascular ultrasound or near-infrared
spectroscopy may provide a more comprehensive assessment of plaque
morphology and vulnerability, enabling more accurate risk
stratification.

Longitudinal studies: Prospective, longitudinal studies correlating
automated plaque segmentation with clinical outcomes are needed to
validate the prognostic value of these methods and to inform personal-
ized therapeutic strategies.

Predictive risk assessment and clinical integration: Incorpo-
rating predictive analytics to evaluate the clinical significance of
segmented features can enable the development of risk stratification
tools that inform preventative care strategies. Integrating these predic-
tive models and segmentation tools into existing clinical workflows
through user-friendly interfaces and decision-support systems will
facilitate seamless collaboration with cardiologists and intervention-
alists, thereby enhancing the translational impact of automated plaque
analysis.

6. Conclusion

This study tackled the challenge of automating the segmentation and
quantification of atherosclerotic plaques in OCT images, a critical step in
advancing cardiovascular diagnostics. Through optimized machine
learning models, we demonstrated high accuracy in segmenting key
plaque features, including the lumen (DSC: 0.987), fibrous cap (DSC:
0.736), lipid core (DSC: 0.751), and vasa vasorum (DSC: 0.610). These
findings validate the potential of ML-enhanced OCT imaging to improve
diagnostic precision and efficiency.

Our segmentation framework combined task-specific models — each
tailored to class prevalence and morphological complexity — with
rigorous hyperparameter optimization to achieve balanced, high-quality
predictions across diverse plaque features. To further improve perfor-
mance, we integrated these models into a weighted ensemble that
incorporated class prevalence and model confidence, resulting in a
harmonized system that achieved a weighted DSC of 0.882. This
approach effectively mitigated class imbalance and leveraged architec-
tural complementarity, outperforming individual models and naive ag-
gregation strategies.

Clinically, our framework enables interpretable, spatially resolved,
and quantifiable assessments of plaque features, facilitating early
detection of vulnerable plaques, individualized risk stratification, and
image-guided interventions. However, further prospective, multi-center
validation is required to confirm its translational impact. Beyond car-
diology, the methodology holds interdisciplinary relevance for other
fields requiring high-resolution tissue imaging, such as oncology and
neurology.

Future research will prioritize three directions: (1) expanding data-
sets to include ethnically diverse populations and rare plaque subtypes
(2) integrating multimodal imaging (e.g., OCT-IVUS-NIRS fusion), for
comprehensive plaque characterization, and (3) advancing predictive
risk assessment and clinical integration by developing risk stratification
tools and seamlessly incorporating automated segmentation into clinical
workflows. Immediate next steps include deploying these models in
prospective clinical trials to validate their prognostic value in longitu-
dinal studies and to assess whether ML-driven plaque quantification
improves outcomes in preventive percutaneous coronary interventions.
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