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A B S T R A C T

Introduction: Cardiovascular disease remains a leading cause of mortality worldwide, with atherosclerosis at its 
core. Accurate identification of vulnerable plaques is critical for preventing acute cardiovascular events. While 
optical coherence tomography (OCT) provides high-resolution imaging of plaque features, manual analysis is 
labor-intensive and operator-dependent. This study addresses the need for automated, accurate segmentation of 
atherosclerotic plaques in OCT pullbacks using advanced machine learning (ML) techniques.
Methods: A comprehensive multi-center dataset of OCT pullbacks, encompassing 103 patients and annotated for 
key plaque morphological features (lumen, fibrous cap, lipid core, and vasa vasorum), was used to tune, train and 
evaluate nine ML models, including U-Net, U-Net++, DeepLabV3, DeepLabV3+, FPN, LinkNet, PSPNet, PAN, 
and MA-Net. To address dataset imbalances and optimize performance for each plaque feature, we introduced a 
hybrid segmentation strategy: single-class models were deployed for highly prevalent features (e.g., lumen) and 
underrepresented classes (e.g., vasa vasorum), while a multi-class model targeted morphologically complex 
features with overlapping boundaries (e.g., fibrous cap and lipid core). Hyperparameter tuning was performed 
using Bayesian optimization, and segmentation accuracy was assessed with the Dice Similarity Coefficient (DSC) 
and other metrics.
Results: The models achieved high segmentation accuracy for lumen (DSC: 0.987), fibrous cap (DSC: 0.736), and 
lipid core (DSC: 0.751), demonstrating the potential of leveraging ML techniques to enhance OCT’s diagnostic 
capabilities. While lumen segmentation showed exceptional precision, the moderate accuracy for fibrous cap and 
lipid core highlights challenges with complex morphologies. Satisfactory results for vasa vasorum (DSC: 0.610) 
suggest areas for further refinement. By integrating these models into a weighted ensemble, taking into account 
class prevalence and model confidence, the combined system achieved a weighted DSC of 0.882 across all plaque 
features, a significant improvement over individual models. These findings confirm the hybrid strategy’s ability 
to balance computational efficiency with accuracy through rigorous optimization, tailored model selection, and 
ensemble integration.
Conclusion: This study presents a robust ML-driven framework for automated OCT segmentation that uses a 
hybrid approach and weighted ensemble learning to address class imbalance and feature complexity, signifi
cantly improving the accuracy and efficiency of atherosclerotic plaque analysis. The findings suggest potential 
clinical implications, including improved detection of high-risk plaques and enhanced decision-making in car
diovascular care. However, further prospective validation is required before clinical adoption. Future research 
should focus on expanding datasets, integrating multimodal imaging, and refining models for real-time clinical 
use, paving the way for transformative advancements in cardiovascular diagnostics.
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1. Introduction

Atherosclerosis is a leading cause of cardiovascular morbidity and 
mortality worldwide, underlying ischemic heart diseases such as 
myocardial infarction, stroke, and peripheral arterial disease. It is 
characterized by the accumulation of lipid-laden plaques in arterial 
walls, which narrow the vessel lumen, impair blood flow, and increase 
the risk of thrombotic events [1]. In 2021, ischemic heart disease, 
largely driven by atherosclerosis, accounted for over 10 million deaths 
globally, remaining the foremost cause of mortality across both devel
oped and developing regions [2]. Despite progress in medical therapy 
and revascularization, the incidence of atherosclerotic cardiovascular 
diseases continues to rise, particularly in low- and middle-income 
countries, underscoring the need for improved diagnostic and thera
peutic strategies [3]. The clinical danger of atherosclerosis stems from 
both progressive luminal obstruction and plaque instability [4]. While 
some plaques remain asymptomatic, others are prone to rupture, trig
gering acute coronary syndromes and stroke [5]. Plaque vulnerability, 
encompassing inflammation, endothelial dysfunction, and lipid content, 
contributes to their varied behavior [6]. In addition to established fea
tures such as thin fibrous cap and large lipid core, recent evidence 
highlights the role of neovascularization (specifically, the proliferation 
of vasa vasorum) in promoting intraplaque inflammation and hemor
rhage, both of which are implicated in plaque destabilization and 
rupture [6,7]. Identifying rupture-prone plaques, therefore, increasingly 
involves the assessment of both structural and microvascular features.

Intravascular imaging techniques such as intravascular ultrasound 
(IVUS), optical coherence tomography (OCT), and near-infrared spec
troscopy (NIRS) have become essential for diagnosing and managing 
atherosclerosis [5,8]. These methods offer advantages over traditional 
techniques like coronary angiography and coronary computed tomog
raphy angiography, which, while valuable for assessing luminal steno
sis, have limitations in detecting plaque composition and vulnerability 
[9]. IVUS is useful for evaluating vessel wall morphology and remod
eling, while OCT, with its superior resolution, is effective in visualizing 
microstructures like fibrous caps and thrombus formation, playing a 
pivotal role in percutaneous coronary interventions and plaque 
vulnerability assessment [10]. NIRS complements these by identifying 
lipid-core plaques, associated with increased cardiovascular risk [11].

Among these, intravascular OCT stands out for its high resolution, 
offering tenfold better spatial resolution compared to IVUS, making it 
ideal for visualizing thin fibrous caps, a key feature of plaque instability 
and acute coronary syndrome risk [12]. Importantly, intravascular OCT 
is an invasive imaging modality, as it requires catheterization to acquire 
high-resolution images of the coronary arteries. Recent studies highlight 
OCT’s ability to predict cardiovascular events by measuring fibrous cap 
thickness and surface area, outperforming other modalities [13]. 
Moreover, ML-driven image analysis is enhancing OCT’s clinical utility, 
automating the identification of vulnerable plaque features, and 
reducing operator dependence [14].

Deep learning has emerged as a powerful tool for automating the 
analysis of intravascular OCT data, enabling segmentation and classifi
cation of plaque types such as calcified and lipid-rich areas. For instance, 
Athanasiou et al. [15] introduced a fully automated methodology that 
significantly reduced manual intervention in plaque detection. Simi
larly, A-line-based classification by Zhu et al. [16] employed a deep 
neural network to classify plaques with high accuracy, offering rapid 
analysis of large datasets. Shi et al. [17] proposed a multi-task learning 
model that achieved high precision in detecting thin-cap fibroather
omas, a key indicator of plaque vulnerability.

Recent OCT studies have started to explore multi-tissue segmenta
tion, yet each is constrained in one of three dimensions: dataset scale, 
tissue breadth, or code availability. Lee et al. [18] reported automated 
micro-vessel delineation in 30 patients (median DSC 0.73) but omitted 
lumen and plaque tissues. Chu et al. [19] treated plaque characterization 
as a classification problem, providing no pixel-wise masks. One main 

difference between our study and such prior work is the emphasis on 
full-resolution tissue segmentation rather than classification alone, 
enabling more precise and clinically interpretable analysis. More 
recently, Wittmann et al. [20] proposed a simulation-based approach for 
3D OCT angiography vessel segmentation, focusing on cerebral vascu
lature without addressing coronary plaque components. Wang et al. [21] 
introduced an attention-based network for segmenting hyperreflective 
foci in retinal OCT images, targeting diabetic macular edema. However, 
both studies did not consider comprehensive coronary plaque segmen
tation or the inclusion of vasa vasorum. Our work is the first to combine 
(i) an open, 103-patient multi-center dataset, (ii) four clinically relevant 
classes, including the rarely annotated vasa vasorum, and (iii) public release 
of models and code.

While prior studies have advanced OCT-based plaque analysis, crit
ical gaps remain. Existing frameworks often prioritize classification over 
detailed segmentation [16], rely on homogeneous datasets [22], or lack 
computational efficiency for clinical deployment [23]. Our work ad
dresses these limitations by introducing a hybrid segmentation frame
work optimized for multi-center OCT data. This approach combines 
task-specific models to balance class imbalance, leverages rigorous 
hyperparameter optimization for efficiency, and integrates explain
ability methods to enhance clinical trust. By focusing on both prevalent 
(e.g., lumen) and rare (e.g., vasa vasorum) plaque features, our meth
odology advances automated, generalizable plaque quantification.

2. Materials and methods

2.1. Data acquisition

To address the segmentation and quantification task, we collected a 
multi-center, multi-scanner dataset that includes OCT pullbacks of 
atherosclerotic plaques in blood vessels. Each OCT pullback represents a 
3D volume with dimensions N× N× M, where N represents the height 
and width of the image in pixels, and M denotes the number of slices, 
capturing the depth of the OCT pullback. This comprehensive dataset 
spans various institutions, imaging devices, and patient demographics, 
making it ideal for training models capable of accurate and reliable 
segmentation and quantification of atherosclerotic plaques across 
diverse clinical settings. Below are the main characteristics of the 
dataset: 

• Institutions: Data were collected from two leading cardiovascular 
research centers: Research Institute for Complex Issues of Cardio
vascular Diseases (Kemerovo, Russia): 73 OCT pullbacks, and Tyu
men Cardiology Research Center (Tyumen, Russia): 30 OCT 
pullbacks. Each pullback represents a single intravascular OCT 
acquisition and consists of cross-sectional slices.

• Scanners: The dataset includes OCT pullbacks acquired using two 
generations of OCT systems from the same manufacturer lineage. 
Specifically, the pullbacks were obtained using two systems: the 
ILUMIEN Intravascular Imaging System and the OPTIS Next Intra
vascular Imaging System, both marketed by Abbott. The use of both 
systems introduces technical heterogeneity in imaging protocols, 
supporting the model’s ability to generalize across different device 
generations.

• Data collection period: OCT pullbacks were collected over 1 year, 
from June 30, 2022 to July 11, 2023, capturing temporal vari
ability in imaging practices and patient characteristics.

• Gender distribution: The dataset comprises pullbacks from 77 
male and 26 female patients, providing essential diversity for 
analyzing sex-specific variations in atherosclerotic plaque 
morphology.

• Image sizes: The height and width of the OCT slices vary between 
704 × 704 pixels and 1024 × 1024 pixels, reflecting diverse 
anatomical features and imaging conditions.
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• Image depth: The number of slices per OCT pullback ranges from 
215 to 270, corresponding to the variable imaging depths employed 
during diagnostic procedures.

The study adhered to the principles outlined in the Declaration of 
Helsinki and received approval from the Local Ethics Committee of the 
Research Institute for Complex Issues of Cardiovascular Diseases 
(Kemerovo, Russia) under protocol code 2022/06 on June 30, 2022. All 
participants provided written informed consent prior to inclusion in the 
study.

Patients aged 18 years or older with stable coronary artery disease 
undergoing cardiac catheterization were considered for inclusion. All 
lesions exhibiting an angiographic diameter stenosis of 50–90%, as 
determined by site visual estimation, were functionally assessed using 
fractional flow reserve (FFR). Intermediate, non-flow-limiting lesions 
(FFR > 0.80) underwent further evaluation via OCT. Flow-limiting le
sions (FFR ≤ 0.80) were treated with percutaneous coronary interven
tion using drug-eluting stents. The main exclusion criteria were as 
follows: 

• Acute coronary syndrome.
• Prior coronary artery bypass grafting.
• Previously stented target lesions.
• Heavily calcified or angulated lesions.

The study cohort consisted of 103 patients with stable coronary ar
tery disease, with a median age of 69 years (range: 43–83). Of these, 77 
(74.7%) were male and 26 (25.3%) were female, reflecting the gender 
distribution within the cohort. A significant portion of the cohort pre
sented with comorbidities, including 22 (21.4%) patients with diabetes 
and a history of myocardial infarction.

Clinical presentations varied, with the majority of patients (94, 
91.3%) experiencing angina pectoris classified as functional classes 1–3, 
while a smaller group (9, 8.7%) exhibited silent ischemia. These diverse 
patient characteristics, summarized in Table 1, enhance the dataset’s 
clinical relevance and provide a comprehensive basis for exploring the 
variability in atherosclerotic plaque features.

2.2. Data annotation

After data collection, two cardiologists meticulously annotated 103 
OCT pullbacks, represented by 25,698 slices, ultimately identifying four 
plaque morphological features (PMFs) associated with distinct patterns 
of atherosclerotic plaque development: lumen, fibrous cap, lipid core, 
and vasa vasorum. Each identified PMF was annotated using binary 
masks as illustrated in Fig. 1. The OCT annotations were conducted 
using the web-based computer vision platform, Supervisely [24].

Following the initial annotation, the labeled slices were reviewed 
and double-verified by a senior cardiologist and a technical specialist 
responsible for dataset preparation to ensure the accuracy and reliability 

of the annotations. This verification process involved adjustments or 
corrections to the annotations, further enhancing their precision and 
consistency.

The features described during the annotation of OCT slices represent 
key morphological characteristics of atherosclerotic plaques. These 
features are critical for understanding plaque composition and its clin
ical implications, particularly in assessing the risk of cardiovascular 
events. The following four PMFs were segmented and quantified: 

1. Lumen (LM): This feature involves measuring the dimensions of the 
vascular lumen, which is crucial for evaluating stenosis and blood 
flow. Accurate lumen quantification helps assess the severity of 
vascular obstructions and guide clinical decision-making.

2. Fibrous cap (FC): This feature pertains to the fibrous cap’s thickness 
and structure. The fibrous cap plays a significant role in plaque 
vulnerability, and its analysis is essential for predicting the likeli
hood of plaque rupture and potential cardiovascular events.

3. Lipid core (LC): The lipid core is characterized by high lipid content 
within the plaque. Quantifying the lipid core is a key indicator of 
atherosclerotic activity and helps to assess the likelihood of high-risk 
plaques, which can lead to serious conditions such as myocardial 
infarction.

4. Vasa vasorum (VV): The “vasa vasorum” feature was defined to 
include all microvessels and microchannels visible within the vessel 
wall and atherosclerotic plaque on OCT images, irrespective of their 
precise anatomical location. This encompasses both classical vasa 
vasorum, which are typically located in the adventitia and outer 
media, and neovessels arising within the intima and atherosclerotic 
plaque (sometimes referred to as “vasa plaquorum”). This inclusive 
definition was adopted to reflect the full spectrum of micro
vascularization associated with atherosclerotic disease, recognizing 
that OCT imaging may not reliably distinguish between these sub
types. The presence, density, and distribution of such microvessels 
are increasingly recognized as indicators of intraplaque neo
vascularization, inflammation, and heightened risk of plaque 
rupture. Accordingly, quantification of these microvessels provides 
valuable complementary information for assessing plaque vulnera
bility and the biological activity underlying atherosclerotic 
progression.

All identified PMFs play an essential role in understanding the 
structure and progression of atherosclerotic disease. Each feature pro
vides critical insight into different aspects of plaque composition, 
influencing the clinical assessment of plaque stability and the risk of 
cardiovascular events. The vascular lumen reflects the degree of steno
sis, affecting blood flow, while the fibrous cap, lipid core, and vasa 
vasorum are important markers for evaluating plaque vulnerability.

In the context of OCT imaging, these features are segmented and 
quantified to offer detailed visualization and measurement of plaque 
composition. This enables a comprehensive analysis of the plaques’ 
morphology, aiding in the diagnosis and prognosis of atherosclerotic 
disease progression. By focusing on the segmentation of these PMFs, 
OCT provides a precise, invasive method to investigate the structural 
characteristics of plaques and predict potential cardiovascular risks.

Table 1 
Baseline characteristics of patients included in the study.

Parameter Value

Sex:
Male, n (%) 77 (74.7)

Female, n (%) 26 (25.3)
Median age, years [min – max] 69 [43–83]

Arterial hypertension, n (%) 92 (89.3)
Diabetes mellitus, n (%) 22 (21.4)

Myocardial infarction, n (%) 22 (21.4)
Polyvascular disease, n (%) 29 (28.2)

Angina pectoris:
Silent ischemia, n (%) 9 (8.7)

Functional class 1, n (%) 24 (23.3)
Functional class 2, n (%) 55 (53.4)
Functional class 3, n (%) 15 (14.6)

Table 2 
Hyperparameters used during the networks’ optimization.

Hyperparameter Value Count

Architecture U-Net, U-Net++, DeepLabV3, DeepLabV3+, FPN, 
LinkNet, PSPNet, PAN, MA-Net

9

Encoder ResNet-18, ResNet-50, ResNet-101, EfficientNet B0, 
EfficientNet B5, EfficientNet B7, RegNetX-200MF, 

RegNetX-6.4 GF, RegNetY-12GF

9

Input size 512x512 to 896x896 with the step of 128x128 px 4
Optimizer Adam, RAdam, RMSprop 3

Learning rate 10− 3, 10− 4, 10− 5, 10− 6 4

V.V. Danilov et al.                                                                                                                                                                                                                              Computers in Biology and Medicine 197 (2025) 111061 

3 

https://supervisely.com/


2.3. Model selection

To segment the four classes in OCT slices, we evaluated nine different 
neural networks: U-Net [25], U-Net++ [26], DeepLabV3 [27], Deep
LabV3+ [28], FPN [29], LinkNet [30], PSPNet [31], PAN [32] and 
MA-Net [33]. These models were chosen based on their established ef
ficacy in analyzing complex biomedical images [34].

U-Net, widely applied in biomedical image segmentation, is built on 
an encoder-decoder architecture that excels at capturing fine details 
[25]. Its ability to isolate small structures, such as calcified plaques and 
fibrous caps, makes it ideal for OCT image segmentation. U-Net’s 
frequent use in related studies further solidifies its role as a baseline 
model [18,19]. U-Net++ enhances this with densely connected skip 
pathways, improving feature propagation and making it particularly 
effective for segmenting small, delicate structures like microvessels and 
thin fibrous caps, critical in OCT imaging, where precision is essential.

DeepLabV3 uses atrous convolution to extract features at multiple 
resolutions without downsampling, maintaining important details in 
OCT images [35]. This is crucial for accurately segmenting intricate 
structures such as lipid cores and calcifications. DeepLabV3+ further 
improves this model with a refined decoder, enhancing object boundary 
segmentation – essential for identifying small features like fibrous caps 
[36]. In similar studies, DeepLabV3+ has shown strong performance, 
achieving a sensitivity of 85.8% and a high A-line Dice coefficient of 
0.837 in lipid plaque detection, along with a mean Dice score of 0.73 ±
0.10 for microvessel segmentation [18].

Feature Pyramid Network (FPN) excels at capturing multi-scale 
features, making it well-suited for segmenting and quantifying athero
sclerotic plaques in OCT images [37]. By employing pyramidal feature 
hierarchies, FPN captures both global and fine-scale information, 
improving segmentation accuracy in cardiological imaging [38]. FPN 
has also demonstrated rapid convergence in similar segmentation tasks, 
such as microvascular feature detection in tissue-engineered vascular 
grafts [39].

LinkNet offers a streamlined architecture that balances computa
tional efficiency with detailed feature extraction, making it suitable for 
real-time applications in OCT imaging. Its design allows for the rapid 
processing of high-resolution images while preserving the fine details 
needed to accurately segment complex plaque structures. In specific 
plaque segmentation tasks, LinkNet-34 has outperformed other models 
like FPN and U-Net [40].

PSPNet introduces a pyramid pooling module to aggregate multi- 
scale contextual information, making it highly effective for segment
ing heterogeneous structures in OCT, such as thin fibrous caps and large 
calcifications [31]. PSPNet also demonstrated competitive convergence 
speeds in previous studies, ranking second only to FPN [39].

Pyramid Attention Network (PAN) combines pyramid pooling with 
attention mechanisms, capturing both local and global contexts. This 
dual mechanism ensures precise segmentation of small, critical features 
like microvessels and fibrous caps, which are vital in OCT imaging [41].

Lastly, Multi-Attention Network (MA-Net) employs multi-scale 
attention mechanisms, allowing it to capture fine details while main
taining broad contextual understanding. This makes MA-Net particu
larly effective for segmenting complex cardiovascular structures in OCT. 
Its successful application in IVUS image segmentation further supports 
its suitability for this task [42].

Overall, the selection of these nine models represents a compre
hensive approach to addressing the specific challenges of OCT image 
segmentation. Each model brings distinct strengths in handling local and 
global features, preserving image resolution, and processing complex 
anatomical structures. This diversity in architecture provides a solid 
foundation for comparison and optimization, ensuring that the most 
suitable model can be identified for future advancements and clinical 
integration.

2.4. Model design

The design of the segmentation models was motivated by the non- 
uniform distribution of PMFs within the dataset and the distinct char
acteristics of each class. As detailed in Table 3, lumen objects are the 
most prevalent, comprising 21,808 instances, followed by fibrous cap 
(7226 instances) and lipid core (7192 instances). In contrast, the vasa 
vasorum class is significantly underrepresented, with only 450 
instances.

The relatively low number of vasa vasorum instances in our dataset 
reflects primarily biological constraints. Vasa vasorum are small 
microvessels that are infrequently present in coronary OCT images, 
particularly in cases of stable coronary artery disease and in the absence 
of pronounced neovascularization. Clinical experience indicates that 

Fig. 1. Annotation methodology for optical coherence tomography slices depicting plaque morphological features associated with atherosclerotic plaque devel
opment. The feature annotations delineated with segmentation masks include the lumen (pink), fibrous cap (blue), lipid core (green), and vasa vasorum (red).

Table 3 
Slice and plaque morphological feature distributions across folds and subsets.

Fold Subset LM FC LC VV Total objects Total slices

1 Train 17264 5610 5576 328 28778 16901
Test 4544 1616 1616 122 7898 4492

2 Train 17554 5709 5690 237 29190 17207
Test 4254 1517 1502 213 7486 4186

3 Train 17220 5600 5565 407 28792 16962
Test 4588 1626 1627 43 7884 4431

4 Train 17813 5724 5686 416 29639 17473
Test 3995 1502 1506 34 7037 3920

5 Train 17381 6261 6251 412 30405 17029
Test 4427 965 941 38 6371 4364
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when neovascularization is present, vasa vasorum can be clearly visu
alized and reliably identified on OCT. However, such cases were un
common in our cohort. Despite their rarity, vasa vasorum were included 
in the segmentation task due to their emerging clinical relevance as 
markers of plaque inflammation and vulnerability.

This imbalance poses unique challenges for segmentation tasks, as 
model performance can be biased toward more abundant classes while 
underperforming on rare ones. To address these challenges, we adopted 
a hybrid segmentation strategy tailored to the specific distribution and 
morphological complexity of each PMF: 

• Lumen segmentation: Leveraging its high representation in the 
dataset, a single-class model was trained exclusively for lumen.

• Fibrous cap and lipid core segmentation: These two classes, while 
moderately represented, share morphological similarities, such as 
complex and overlapping boundaries. A two-class model was tuned 
and trained to improve segmentation accuracy for both features.

• Vasa vasorum segmentation: The rarity of this class necessitated a 
dedicated single-class model to enhance performance by focusing 
solely on the specific characteristics of vasa vasorum.

This targeted approach allows for better handling of class imbalance, 
ensuring that each segmentation network is optimally configured for its 
respective PMF. By isolating segmentation tasks and aligning model 
designs with class distributions, we mitigate the inherent challenges 
posed by imbalanced datasets while improving segmentation accuracy 
across all classes. For the final ensemble, we trained three specialized 
models: a binary model for lumen segmentation, a binary model for vasa 
vasorum segmentation, and a two-class model for simultaneous seg
mentation of fibrous cap and lipid core. In contrast, the baseline multi- 
class model was trained to predict all four classes simultaneously within 
a single network. This distinction allowed us to address class imbalance 
and morphological complexity more effectively.

3. Hyperparameter tuning strategy

To achieve high-quality segmentation, we meticulously optimized 
the segmentation networks. Given the challenges posed by dataset 
imbalance, we curated specific datasets tailored to each segmentation 
task, transforming the overall problem into distinct binary and two-class 
segmentation subtasks. For each model, we conducted an extensive 
search over 350 hyperparameter configurations, optimizing architec
tural and training components. This rigorous process ensured optimal 
performance for each class-specific segmentation task.

Due to the substantial computational demands associated with 
hyperparameter optimization across multiple deep learning architec
tures and segmentation tasks, hyperparameter tuning was performed on 
a truncated dataset comprising 40 patients. This subset was selected 
using stratified random sampling to ensure that the distribution of key 
plaque morphological features (lumen, fibrous cap, lipid core, and vasa 
vasorum) closely reflected that of the entire cohort. This approach was 
intended to maintain the representativeness of the tuning dataset while 
enabling feasible optimization. The optimal hyperparameters identified 
using this subset were subsequently applied to model training on the 
complete dataset of 103 patients, with comparable performance 
observed across all plaque features.

Our tuning process aims to maximize the segmentation score, spe
cifically focusing on the Dice Similarity Coefficient. To achieve this goal, 
we utilize a DSC loss, which is calculated as follows: 

Loss=1 −
2
∑(

ytrue × ypred

)
+ ε

∑
ytrue +

∑
ypred + ε (1) 

where ytrue and ypred represent the true and predicted label values, 
respectively, and ε is a small constant (set to 10− 7 in our case) for nu
merical stability to avoid zero division errors.

As hyperparameter priorities vary during tuning, and certain 
hyperparameters have a more significant impact on network perfor
mance than others [43], we focused our hyperparameter tuning efforts 
on specific aspects rather than trying to optimize every parameter. In 
particular, we did not tune hyperparameters such as batch size, 
nonlinearity type, optimizer options, or kernel sizes. Instead, we focused 
on hyperparameters that were shown to be important in our previous 
study [34], namely encoder architecture, input image size, optimizer 
selection, and learning rate. In Table 2, we provide a comprehensive 
summary of the hyperparameters explored during the tuning process, 
along with the corresponding values used.

Regarding the hyperparameter search strategy, we employed 
Bayesian search, which, unlike Random or Grid Search, makes informed 
decisions. Bayesian optimization utilizes a probabilistic model to 
determine which values to use through an iterative process of testing 
values on a surrogate function before evaluating the objective function. 
Additionally, we utilized a specific early termination strategy, Hyper
Band [44], to halt poorly performing configurations. When early 
termination occurs, HyperBand stops the current configuration before 
proceeding with a new set of hyperparameter values. The combination 
of Bayesian optimization and HyperBand early termination forms a 
so-called “BOHB” [45], an approach that offers higher computational 
efficiency and robustness compared to Grid Search, Random Search, or 
standard implementations of Bayesian optimization or HyperBand.

3.1. Model training strategy

Following hyperparameter tuning, the segmentation networks were 
trained on the entire dataset using the identified optimal configurations. 
The training strategy leverages specialized networks to align with the 
segmentation approach: 

• Single-class binary models were employed for lumen and vasa 
vasorum, targeting their distinct distributions and characteristics.

• A two-class model was used for fibrous cap and lipid core, leveraging 
their shared features and moderate representation in the dataset.

This strategy recognizes the unique demands of each PMF and en
ables the models to focus on their specific segmentation challenges. By 
dedicating a separate network to each segmentation task, we improved 
boundary delineation and overall segmentation accuracy, particularly 
for the less represented classes.

Given the limited number of subjects studied, comprising 103 pa
tients (OCT pullbacks), we employed a 5-fold cross-validation tech
nique. In this approach, each fold involved approximately 80% of the 
OCT pullbacks for training and the remaining 20% for testing (Table 3
and Fig. S1 of the Supplementary Information). This partitioning scheme 
was consistently applied to maintain the integrity of subject groups 
within each subset. Cross-validation was performed on a patient-wise 
basis, ensuring that no slices from the same patient appeared in both 
training and test sets. This approach prevented any form of data leakage 
and ensured the integrity of model evaluation.

During both the tuning and training steps, we employed a set of 
augmentation transformations using the “Albumentations” library [46]. 
These augmentations not only allowed us to expand the dataset size but 
also served as a regularization technique, helping to mitigate overfitting 
during model training. The proposed augmentation workflow encom
passes the following transformations: 

• Horizontal flip with a probability of 50%.
• Shift, scale, and rotate with a probability of 20%: Allows for random 

shifts, scaling, and rotations within specified limits (shift limit =
0.0625, scale limit = 0.1, and rotate limit = 15).

• Random crop with a probability of 20%: A random-sized crop is 
applied with dimensions determined by a percentage of the input 
size, ranging from 0.8 to 0.9 times the input size.
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• Conditional Padding. All slices are padded to ensure a consistent size 
for processing.

• Gaussian noise with a probability of 20%: Adds random noise to the 
images with a variable intensity range, where the variance ranges 
from 3 to 10.

• Perspective distortion with a probability of 20%: Applies random 
perspective transformations to the images with a scale of 0.05–0.1.

• Random brightness and contrast adjustment with a probability of 
20%: Adjusts the brightness and contrast of the images within 
specified limits (brightness limit = 0.2, contrast limit = 0.2).

• Hue, saturation, and value adjustment with a probability of 20%: 
Shifts the hue, saturation, and value of the images within specified 
limits (hue shift limit = 20, saturation shift limit = 30, value shift 
limit = 20).

In contrast to the tuning step, where a fixed batch size of 4 was 
utilized, the training step did not employ a fixed batch size. Since the 
studied models vary in complexity, they require different amounts of 
memory for training with a fixed batch size. Therefore, to ensure equi
table training conditions, we adjusted the batch size based on the GPU 
memory utilization. Specifically, each model was trained with a batch 
size that allocated approximately 90–100% of GPU memory.

The network training, tuning, and testing were performed on a 
desktop computer featuring a 16-core Intel Xeon Gold 6326 CPU @ 2.90 
GHz, 128 GB of RAM, and an Nvidia A100 GPU with 40 GB of video 
memory. PyTorch v2.2 and Python v3.11 were utilized as the primary 
machine learning framework and language for network development, 
respectively.

3.2. Ensemble framework

Before finalizing our hybrid ensemble approach, we trained a single 
multi-class segmentation model to jointly predict all four tissue types 
(lumen, fibrous cap, lipid core, and vasa vasorum) using the same ar
chitecture and data pipeline. This baseline yielded suboptimal results. 
The strong imbalance in both pixel count and instance frequency, 
particularly the dominance of the lumen class, caused the model to 
disproportionately prioritize lumen segmentation. As a result, it pro
duced acceptable Dice scores for the lumen but substantially lower 
performance for the remaining tissues. Fibrous cap and lipid core re
gions were segmented inconsistently, and vasa vasorum was frequently 
missed or misclassified. This imbalance-related bias motivated our de
cision to train anatomically distinct models and combine them using a 
weighted ensemble strategy.

To further enhance segmentation accuracy and address class imbal
ance, we implemented a weighted ensemble framework that integrates 
predictions from the best-performing models for each PMF. For each 
pixel, the final class assignment was determined by maximizing a 
weighted sum of the predicted probabilities: 

ŷ(x)= argmax
c

(wc ⋅ pc(x)) (2) 

where pc(x) is the predicted probability for class c at pixel x, wc is a 
composite weight reflecting both the prevalence of class c in the training 
data and the model’s confidence, measured by the mean Dice Similarity 
Coefficient (DSC) for class c on the validation set.

This approach prioritizes the accurate detection of rare classes while 
leveraging the strengths of individual models. The weights wc were 
empirically determined as: 

wc =
DSCc

log(1 + prevalencec)
(3) 

where DSCc is the mean Dice score for class c, and prevalencec is the 
proportion of pixels belonging to class c in the training set. This 
formulation is designed to optimize segmentation performance by 

balancing model confidence with class frequency, thereby enhancing the 
detection of underrepresented features such as vasa vasorum. Impor
tantly, the ensemble weights are not intended to reflect the clinical risk 
associated with each feature (e.g., fibrous cap thickness or lipid core 
size), but rather to maximize overall segmentation accuracy. Clinical 
interpretation and risk stratification based on the segmented features are 
subsequent steps that can be performed using the quantitative outputs of 
our framework.

3.3. Model explainability

To ensure thorough model validation, we conducted an additional 
investigation focused on assessing the explainability of our models. In 
this context, we employed various methods of class activation mapping 
(CAM), including GradCAM [47], HiResCAM [48], GradCAMElement
Wise [49], GradCAM++ [50], XGradCAM [51], EigenCAM [52], 
EigenGradCAM, and LayerCAM [53]. These techniques were specifically 
aimed at analyzing the last layer of the encoder of the considered 
models.

To gain deeper insights into the decision-making process of the 
model and validate its predictive capabilities, we utilized the following 
explainable AI methods: 

• GradCAM: A gradient-based method that identifies crucial regions of 
an image for classification based on activation gradients.

• HiResCAM: A high-resolution version of GradCAM designed for more 
precise delineation of activation regions.

• GradCAMElementWise: A variation of GradCAM that considers the 
influence of each pixel on the final prediction.

• GradCAM++: An enhanced version of GradCAM that considers both 
positive and negative activation gradients.

• XGradCAM: An extended version of GradCAM that utilizes additional 
features to improve the accuracy of important region detection.

• EigenCAM: A method based on eigenvalue algorithms to determine 
important image regions.

• EigenGradCAM: A variation of EigenCAM that also considers acti
vation gradients to improve the accuracy of important region 
determination.

• LayerCAM: A method that analyzes activations in different layers of 
the model to identify important image features.

These methods provided invaluable insights into the inner workings 
of our models, illuminating the regions of interest identified during the 
segmentation process. This examination of model explainability bolsters 
our confidence in the reliability and interpretability of the segmentation 
results generated by our networks.

4. Results

4.1. Hyperparameter tuning

A comprehensive hyperparameter tuning process was conducted for 
each studied PMF, as outlined in the Hyperparameter tuning strategy 
section. This involved the evaluation of 350 network configurations per 
model (1050 configurations in total). The main results are summarized 
below, in Table 4, and in Table S1–S3 of the Supplementary Information: 

• Tuning time: The duration of the tuning process varied significantly 
across different PMFs. Fibrous cap and lipid core segmentation 
required the longest tuning time, consuming 712 h, which likely 
reflects the complexity of these particular classes. In comparison, the 
lumen segmentation model completed its tuning in 309 h. Vasa 
vasorum segmentation, having a smaller dataset, exhibited the 
shortest tuning time at 103 h. It should be noted that these reported 
times correspond to the total cumulative runtime required to eval
uate all 350 network configurations for each plaque morphological 
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feature during hyperparameter optimization. In the supplementary 
materials (Table S1–S3), we present only the optimal configurations 
for each class and network architecture, along with their individual 
runtimes. The full set of tested configurations and their respective 
runtimes are available in our GitHub repository for full transparency 
(see Data availability).

• Model Performance. The segmentation performance of each model 
was evaluated using several metrics, including precision, recall, F1 
score, Intersection over Union (IoU), and Dice Similarity Coefficient. 
These metrics were computed on the truncated dataset of 40 patients 
used exclusively for model tuning to reflect performance during the 
fine-tuning phase. U-Net++ achieved the highest DSC of 0.989 for 
lumen segmentation, demonstrating nearly ideal agreement between 
predicted and ground truth segmentations. For fibrous cap and lipid 
core segmentation, LinkNet attained a DSC of 0.617, indicating 
moderate accuracy on average. Finally, U-Net performed relatively 

well in vasa vasorum segmentation, with a DSC of 0.784, reflecting a 
good level of accuracy for this smaller dataset.

• Model Complexity: Model complexity was assessed based on the 
number of parameters and multiply-accumulate operations (MACs). 
U-Net++, used for lumen segmentation, had 68 million parameters 
and required 249.8 GMACs of computational power. LinkNet, 
employed for fibrous cap and lipid core segmentation, had 64.4 
million parameters and exhibited the lowest computational load, 
requiring only 9.0 GMACs. In contrast, U-Net, applied to vasa vaso
rum segmentation, had the smallest number of parameters at 31.9 
million and required 158 GMACs.

Overall, the results underscore the variability in model performance 
and computational complexity across different segmentation tasks. U- 
Net++ exhibited superior performance in lumen segmentation, while 
LinkNet and U-Net demonstrated robustness for fibrous cap, lipid core, 
and vasa vasorum segmentation. These findings highlight the trade-offs 
between model accuracy and complexity, emphasizing the need for task- 
specific optimization in plaque segmentation.

4.2. Model training

We conducted a comprehensive evaluation of the training dynamics 
for the top-performing models selected during the hyperparameter 
tuning phase: U-Net++ for lumen segmentation, LinkNet for fibrous cap 
and lipid core segmentation, and U-Net for vasa vasorum segmentation. 
These models were trained for 125 epochs using a 5-fold cross-validation 
strategy to ensure robust performance assessment. This cross-validation 
setup allowed us to track trends in the loss function and DSC over epochs 
for each PMF, ensuring detailed monitoring of convergence behavior 
(refer to Fig. 2).

The lumen, fibrous cap and lipid core segmentation models exhibited 

Table 4 
Optimal hyperparameters for the studied plaque morphological features.

Lumen Fibrous cap & Lipid core Vasa vasorum

Architecture U-Net++ LinkNet U-Net
Encoder ResNet-101 EfficientNet B7 RegNetX-6.4 GF

Input size 512x512 896x896 896x896
Optimizer RMSprop RMSprop RAdam

Learning rate 10–5 10–5 10–3

Parameters, M 68.0 64.4 31.9
MACs, G 249.8 9.0 158.0
Precision 0.991 0.700 0.814

Recall 0.993 0.977 1.000
F1 0.989 0.617 0.784
IoU 0.979 0.488 0.695
DSC 0.989 0.617 0.784

Fig. 2. Comparative analysis of loss and DSC evolution during training and testing phases over 5-fold cross-validation with 95% confidence intervals.
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a clear and consistent reduction in loss accompanied by progressive 
improvements in the DSC, indicative of effective learning and precise 
refinement of segmentation predictions. Conversely, the vasa vasorum 
model demonstrated a slower convergence rate, coupled with significant 
fluctuations in loss and DSC values. These variations underscore the 
inherent complexity and challenges associated with segmentation of this 
PMF.

To systematically assess convergence, we defined stabilization points 
(refer to Fig. 2) for the loss function and DSC where incremental im
provements were minimal. U-Net++ (lumen segmentation) and LinkNet 
(fibrous cap and lipid core segmentation) achieved stabilization rapidly, 
requiring fewer epochs to reach high DSC values with minimal loss 
variability. In contrast, U-Net (vasa vasorum segmentation) exhibited 
protracted convergence and less stable training curves, indicating 
challenges in learning fine-grained features in this PMF. Such fluctua
tions reflect the structural complexity and variability of the vasa vaso
rum, which likely require more nuanced feature extraction and 
aggregation.

The observed disparities in convergence behavior can be attributed 
to several factors, including architectural variations among the models, 
differences in parameter initialization, and the intrinsic segmentation 
difficulty of each PMF. For instance, the vasa vasorum model faced 
challenges in capturing subtle morphological features, requiring longer 
training times and advanced architectural mechanisms for effective 
feature learning.

The evaluation of segmentation performance metrics reveals varying 
levels of accuracy across the PMFs assessed (refer to Table 5 and Fig. 3). 
The lumen segmentation model exhibits exceptional performance, 
achieving a DSC of 0.987 and an IoU of 0.975. These metrics underscore 
the model’s ability to reliably and accurately delineate lumen structures, 
highlighting its robustness and suitability for clinical applications 
requiring precise segmentation. In contrast, the fibrous cap and lipid 
core model demonstrate reliable performance, with DSCs of 0.736 and 
0.751, respectively. These results reflect the effectiveness of the model 
in capturing the intricate and complex boundaries of these structures, 
despite the inherent challenges posed by their morphology. The vasa 
vasorum model shows moderate performance, achieving a DSC of 0.610. 
While segmentation of this feature remains challenging due to its subtle 
and less distinct boundaries, the results indicate progress in addressing 
these complexities.

To establish the upper bound of segmentation performance, we 
assessed the inter-annotator agreement between two expert cardiolo
gists on a representative subset of the dataset. The DSC for each plaque 
morphological feature was as follows: lumen, 0.985; fibrous cap, 0.844; 
lipid core, 0.815; and vasa vasorum, 0.693. These values represent the 
expected range of human-level agreement and provide a benchmark for 
interpreting the model’s performance.

By integrating these task-specific models into a weighted ensemble 
framework – which accounts for class prevalence and model confidence 
– the combined ensemble achieved a weighted DSC of 0.882 across all 
PMFs. To assess the effectiveness of the proposed weighted ensemble, 
we compared its performance with two naive aggregation strategies: (1) 
majority voting, where each pixel is assigned the class predicted by the 
majority of models, and (2) unweighted averaging, where class proba
bilities are averaged across models and the class with the highest mean 
probability is selected. As shown in Table 6, our weighted ensemble 

consistently outperformed both naive methods, particularly for the vasa 
vasorum class (DSC: 0.610 vs. 0.541 for majority voting and 0.552 for 
unweighted averaging), and achieved the highest overall weighted DSC 
(0.882 vs. 0.864 and 0.867, respectively). This represents a significant 
improvement over individual models, demonstrating the ensemble’s 
ability to harmonize diverse architectural strengths and mitigate class 
imbalance challenges inherent in heterogeneous plaque characteriza
tion. It should be emphasized that the ensemble weighting strategy is 
optimized for segmentation accuracy and does not directly encode 
clinical vulnerability criteria. The clinical significance of features such 
as lumen size, lipid core area, or fibrous cap thickness is assessed in 
downstream analyses, leveraging the accurate and comprehensive seg
mentation provided by our ensemble framework.

4.3. Model visual assessment

To assess segmentation accuracy visually, we present three repre
sentative slices that illustrate the segmentation outputs for the plaque 
morphological features (Fig. 4). These slices display predictions gener
ated by the optimal ensemble of models: U-Net++ for lumen segmen
tation, LinkNet for fibrous cap and lipid core segmentation, and U-Net 
for vasa vasorum segmentation. The predictions are juxtaposed with 
their corresponding ground truth annotations, allowing for a direct vi
sual evaluation of model performance.

As depicted in Fig. 4, the segmentations of lumen and vasa vasorum 
exhibit strong alignment with the ground truth, underscoring the en
semble’s effectiveness in delineating these features. However, subtle 
discrepancies are occasionally observed in the fibrous cap and lipid core 
segmentations. These challenges are likely attributable to the more 
complex structure and morphology of these features, which differ 
significantly from those of lumen and vasa vasorum. Both fibrous cap 
and lipid core are components of tissue with diffuse and intricate 
boundaries, making precise delineation more difficult. In contrast, 
lumen and vasa vasorum typically exhibit clearer and more distinct 
borders, facilitating their segmentation.

It is important to note that, while the segmentation of the lumen and 
major plaque features demonstrates high accuracy, the delineation of 
the outer vessel wall remains suboptimal. This limitation is primarily 
attributable to the intrinsic characteristics of OCT imaging, most notably 
its limited penetration depth, which often precludes visualization of the 
vessel wall beneath atherosclerotic plaques and thus the true outer 
boundary of the plaque. In the majority of cases, the outer boundary 
cannot be reliably identified on OCT. Consequently, our annotation 
protocol required annotators to segment either along the frame 
boundary or by extrapolating the visible medial layer from adjacent 
regions. This necessary but pragmatic approach introduces subjectivity 
and interobserver variability, further constraining the achievable seg
mentation quality at the vessel periphery. Moreover, as the outer wall 
was not explicitly annotated as a separate class in our dataset, its 
identification relies on the inferred boundaries of other segmented fea
tures. Future work will address these limitations by incorporating 
explicit outer wall annotation and leveraging multimodal imaging to 
improve boundary definition.

The fibrous cap, in particular, is a thin layer of fibrous tissue over
laying a lipid core, and its boundary can vary significantly in texture and 
thickness. Meanwhile, the lipid core’s irregular geometry and frequent 
embedding within surrounding tissue further complicate its segmenta
tion. These intrinsic structural challenges likely contribute to the 
observed differences in segmentation accuracy. These visual compari
sons complement the quantitative performance metrics and provide 
critical insights into the specific areas where improvements are needed. 
Additional visualization of model predictions, highlighting their per
formance on various plaque morphological features, is available in 
Fig. S1 of the Supplementary Information.

Table 5 
Segmentation performance metrics for each plaque morphological feature, 
averaged over 5 folds during cross-validation.

PMF Precision Recall F1 IoU DSC

Lumen 0.986 0.988 0.987 0.975 0.987
Fibrous cap 0.737 0.784 0.736 0.608 0.736
Lipid core 0.815 0.772 0.751 0.639 0.751

Vasa vasorum 0.664 0.630 0.610 0.511 0.610
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4.4. Model explainability and class activation mapping analysis

To evaluate the interpretability of the segmentation models and their 
focus on relevant plaque morphological features, multiple CAM methods 
were applied, including GradCAM, GradCAM++, HiResCAM, Layer
CAM, and others. In the main body of this article, we present compar
ative class activation maps for the largest and smallest regions: the 
lumen (Fig. 5) and the vasa vasorum (Fig. 6). These examples demon
strate the variability in CAM algorithm performance across features with 
differing sizes and complexities. Further examples of comparative class 
activation maps for different patients and each of the studied classes are 
provided in Fig. S2–S5 of the Supplementary Information, offering a 
broader evaluation of model performance.

The results for each plaque feature, as observed through CAM anal
ysis, are summarized below: 

• Lumen 
o LayerCAM, HiResCAM, GradCAMElementWise, and Eigen

GradCAM consistently demonstrated superior performance in 
identifying lumen boundaries with high precision. These algo
rithms effectively emphasized clear contours and minimized false 
activations outside the lumen area, indicating robust feature 
localization.

o GradCAM, GradCAM++, and XGradCAM exhibited moderate 
performance. While they captured the general shape of the lumen, 
occasional activations on image corners or background artifacts 
reduced their reliability.

o EigenCAM underperformed, frequently misclassifying surround
ing regions as part of the lumen, which detracted from its 
interpretability.

• Fibrous cap 
o LayerCAM, HiResCAM, GradCAMElementWise, and Eigen

GradCAM excelled in highlighting the thin fibrous cap layer, a 
critical feature for assessing plaque vulnerability. These methods 
accurately delineated the fibrous cap boundaries, even in chal
lenging cases with diffuse textures.

o GradCAM, GradCAM++, and XGradCAM provided average per
formance, with outputs occasionally including spurious activa
tions at image edges.

o EigenCAM performed poorly, often activating erroneously on lipid 
core regions rather than the fibrous structure itself, undermining 
its clinical relevance.

• Lipid core 
o Segmentation of the lipid core proved challenging for all tested 

algorithms. Weak or incorrect activations were observed across all 
CAM methods, including GradCAM, HiResCAM, GradCAMEle
mentWise, GradCAM++, XGradCAM, EigenCAM, EigenGradCAM, 
and LayerCAM. Most CAM approaches for the lipid core incor
rectly focused attention on the lumen, the fibrous cap, or vessel 
regions immediately adjacent to the lumen. This was particularly 
pronounced for GradCAMElementWise and EigenGradCAM, 
which frequently activated erroneously at the boundary between 
the lumen and lipid core or even within the lumen itself.

o This limitation is likely due to the lipid core’s intricate 
morphology, unclear boundaries, and frequent proximity to the 
vessel lumen, making accurate localization difficult even for 

Fig. 3. Average feature-wise performance across various plaque morphological features.

Table 6 
Comparison of ensemble strategies for segmentation performance (DSC values).

Method Lumen Fibrous Cap Lipid Core Vasa Vasorum Weighted DSC

Majority Voting 0.985 0.701 0.729 0.541 0.864
Unweighted Averaging 0.986 0.713 0.735 0.552 0.867

Weighted Ensemble 0.987 0.736 0.751 0.610 0.882
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advanced explainability methods. These findings highlight the 
need for additional training or specialized optimization to improve 
detection for this category.

• Vasa vasorum 
o Most algorithms, except EigenCAM, performed adequately in 

identifying the vasa vasorum. These methods correctly highlighted 
the small, less distinct vascular structures with minor deviations.

o EigenCAM, however, exhibited significant misclassifications, often 
activating in the lumen region where vasa vasorum structures 
were absent, reducing its reliability for detecting smaller 
anatomical features.

These activation maps validate the models’ focus on anatomically 
relevant regions and provide a mechanism for identifying potential areas 
of misclassification or ambiguity. Notably, LayerCAM and HiResCAM 
demonstrated consistent performance in generating accurate visualiza
tions across all plaque features, outperforming other methods due to 
their ability to aggregate multi-scale activations and localize fine 
structures (e.g., thin fibrous caps) with minimal false positives. Their 
gradient-weighted attention mechanisms further suppress imaging ar
tifacts inherent to OCT, such as speckle noise, while preserving critical 
morphological details. By integrating these explainability methods into 

the segmentation pipeline, our analysis not only enhances confidence in 
the models’ clinical applicability but also identifies opportunities for 
optimization, such as refining feature boundaries in lipid-rich regions.

5. Discussion

5.1. Clinical relevance of plaque morphology in OCT

Current clinical guidelines recommend percutaneous coronary 
intervention (PCI) exclusively for flow-limiting lesions or those impli
cated in acute coronary syndromes [54]. However, vulnerable plaques, 
whether flow-limiting or not, pose significant risks for future adverse 
cardiac events even under optimal medical therapy [55]. Natural history 
studies have demonstrated that characteristics such as large plaque 
burden, reduced minimal lumen area, high lipid content, and thin 
fibrous caps are strongly associated with lesion-specific cardiac events, 
with risk escalating as the number of adverse features increases [56].

In addition to these established features, the role of vasa vasorum in 
plaque vulnerability has garnered increasing attention. Neo
vascularization within the plaque, reflected by increased vasa vasorum, 
facilitates the influx of inflammatory cells and is a major contributor to 
intraplaque hemorrhage, both of which are recognized mechanisms of 

Fig. 4. Comparison between ground truth segmentation and ensemble predictions.
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plaque destabilization [6,7]. Therefore, the inclusion of vasa vasorum as 
a PMF in our study is supported by its emerging relevance in the path
ophysiology of vulnerable plaques.

Interestingly, plaque vulnerability is dynamic; some vulnerable 
plaques stabilize without clinical events, whereas stable plaques may 
transition to a vulnerable state [57]. This evolving understanding has 
spurred interest in preventive PCI for high-risk vulnerable plaques, with 
the stenting mechanism hypothesized to stabilize plaques by covering 
the fibrous cap and reducing the likelihood of rupture [58].

5.2. Segmentation versus alternative ML approaches

While classification approaches can detect the presence of vulnerable 
plaque phenotypes such as thin-cap fibroatheromas (TCFAs), they do not 
provide spatial localization or quantifiable information. Object detec
tion serves as an intermediate approach, predicting bounding boxes 
around regions of interest such as fibrous caps or lipid cores. This pro
vides some localization while requiring less annotation effort than seg
mentation; however, it remains limited to approximate spatial 
delineation and cannot reliably capture fine morphological boundaries.

In contrast, segmentation delivers pixel-level anatomical detail that 
is critical for clinical decision-making. TCFA diagnosis hinges on cap 

thickness <65 μm [59], which necessitates per-pixel precision. It also 
enables visualization of fibrous cap contours, assessment of spatial 
overlap with lipid cores, and calculation of volumetric plaque burden, 
all essential for risk stratification, longitudinal monitoring, and 
image-guided stenting. Additionally, segmentation facilitates the auto
mated extraction of spatial biomarkers that can feed into prognostic or 
predictive models. This granularity and quantification capacity make 
segmentation uniquely suited to clinical workflows, whereas classifica
tion and object detection provide only coarse or partial insights. A 
structured comparison of these three approaches is presented in Table 7.

Table 7 underscores why segmentation is the most clinically valuable 
framework for OCT-based plaque analysis. Unlike classification or object 
detection, only segmentation provides the pixel-level detail required to 
measure fibrous cap thickness, quantify lipid burden, and spatially co- 
register features across serial imaging. These capabilities directly sup
port interventional planning, longitudinal monitoring, and risk 
modeling. While object detection may assist in preliminary localization, 
and classification in broad risk categorization, neither offers the 
anatomical fidelity or quantification necessary for therapeutic decision- 
making. Segmentation, by contrast, delivers anatomically faithful, 
reproducible, and clinically interpretable outputs aligned with real- 
world workflows and predictive tools.

Fig. 5. Comparative class activation maps for the lumen region in patient 032.
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5.3. Advancing deep learning for automated OCT interpretation

Intravascular imaging holds significant promise for improving PCI 
outcomes in patients with coronary artery disease. Methods such as OCT 

and IVUS provide detailed visualization of vessel components and pla
que morphology. However, discrepancies in image interpretation among 
experts complicate diagnostics and decision-making [59].

The integration of deep learning, particularly neural networks, is a 

Fig. 6. Comparative class activation maps for the vasa vasorum region in patient 001.

Table 7 
Comparative overview of classification, object detection, and segmentation approaches for OCT-based plaque feature analysis.

Criteria Classification Object Detection Segmentation

Analytical scope Global (entire frame or image-level 
decision)

Localized region estimation using bounding 
boxes

Pixel-wise delineation of anatomical structures

Model output Single class label per image (e.g., 
TCFA present/absent)

Bounding boxes with class labels for 
candidate regions

Dense semantic mask with per-pixel class assignments

Spatial localization None (presence inferred without 
anatomical mapping)

Coarse localization (rectangular box 
encloses feature)

Precise anatomical boundary (enables cap thickness 
and lipid area computation)

Quantification capability Absent Approximate region-level area estimation Exact measurement of thickness, area, and volume at 
pixel-level resolution

Annotation burden Minimal (image-level labeling) Moderate (box-level labeling per feature) High (manual per-pixel annotation required)
Clinical interpretability Low (non-localized classification with 

limited transparency)
Moderate (approximate localization with 

limited boundary definition)
High (overlay visualization, direct anatomical 

correspondence, and feature traceability)
Relevance to PCI planning Limited (no spatial guidance) Modest (coarse region identification) High (accurate real-time anatomical mapping for 

intervention planning)
Utility in risk modeling Binary predictors (e.g., TCFA 

presence)
Semi-quantitative metrics (e.g., region 

count or size)
Quantitative biomarkers (e.g., cap thickness, lipid 

core burden, spatial distributions)
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rapidly advancing field that could address these challenges. Deep 
learning models trained on intravascular imaging data can identify 
morphological elements of the vascular wall and assess plaque vulner
ability, reducing human error and expediting diagnostic workflows. For 
instance, Jun et al. [60] explored various machine learning classifiers, 
including convolutional neural networks (CNN), feed-forward neural 
networks (FNN), K-nearest neighbor (KNN), and random forests (RF), to 
classify TCFAs using IVUS images labeled with OCT. Their study of 12, 
325 IVUS images reported AUC values of 0.911 for CNN, 0.859 for FNN, 
0.848 for KNN, and 0.844 for RF, with CNN emerging as the most ac
curate classifier. Interestingly, the feature importance rankings of FNN, 
KNN, and RF closely aligned with physician diagnostic criteria, under
scoring the potential of machine learning in replicating expert 
decision-making [60].

In comparison, our study developed a deep learning solution for 
automated segmentation and quantification of atherosclerotic plaques 
in OCT pullbacks. Utilizing state-of-the-art deep learning architectures, 
our models demonstrated high segmentation accuracy for key plaque 
features: lumen (DSC: 0.987), fibrous cap (DSC: 0.736), and lipid core 
(DSC: 0.751). Similarly, Bae et al. [61] demonstrated the potential of ML 
models in TCFAs using OCT-derived data, achieving accuracies of 81% 
with artificial neural networks and AUC values of 0.80, which are 
comparable to the high segmentation accuracy observed in our study.

The findings highlight OCT’s synergy with machine learning for 
accurately segmenting critical plaque features. Lumen segmentation 
achieved near-perfect accuracy, reflecting the robustness of the model 
for well-defined structures. Meanwhile, the moderate performance in 
vasa vasorum segmentation (DSC: 0.610) observed in our study is 
consistent with findings from other studies that have highlighted the 
challenges of detecting subtle vascular structures in OCT images. For 
example, Lee et al. reported similar difficulties in segmenting micro
vessels, achieving a mean DSC of 0.73 ± 0.10, underscoring the need for 
further refinement in this area [18]. Our study advances this field by 
employing a dedicated single-class model for vasa vasorum segmenta
tion, which, while showing moderate results, indicates the necessity for 
larger and more diverse datasets to improve performance.

The inter-annotator agreement analysis demonstrates that the model 
achieves near-human performance for lumen segmentation and 
reasonable accuracy for more challenging features such as the fibrous 
cap, lipid core, and vasa vasorum. The observed gap between model and 
human agreement for these features highlights the inherent difficulty of 
manual annotation and the need for further methodological refinement.

Overall, our findings contribute to the growing body of evidence 
supporting the integration of ML in OCT-based plaque analysis. The 
study supports the hypothesis that advanced segmentation models, 
optimized through rigorous hyperparameter tuning, can achieve a bal
ance between computational efficiency and accuracy. The ensemble 
approach, tailored to specific plaque features, effectively mitigated 
dataset imbalances, thereby enhancing performance across features 
with diverse prevalence rates. The superiority of the weighted ensemble 
over naive aggregation methods underscores the importance of inte
grating both class prevalence and model confidence in the final pre
diction. While majority voting and unweighted averaging are 
straightforward, they fail to account for the inherent class imbalance 
and variability in model performance across different PMFs. Our 
approach, by contrast, adaptively emphasizes underrepresented and 
challenging classes, thereby improving clinical utility and robustness.

5.4. Study limitations

This study, while advancing the use of machine learning for OCT- 
based segmentation, is subject to several limitations that must be 
addressed to maximize its clinical and research impact. These limita
tions include both technical challenges and constraints related to the 
dataset and methodology:

Dataset imbalance and feature representation: The dataset used 

in this study exhibited a marked imbalance among plaque morpholog
ical features, with vasa vasorum being particularly underrepresented. 
This imbalance constrained the model’s ability to achieve high seg
mentation accuracy for rare features, despite the use of targeted single- 
class models and data augmentation. Future studies should aim to curate 
larger, more balanced datasets, especially for features with emerging 
clinical relevance.

Population representation: Although our dataset was collected 
from multiple centers, all participating institutions were located in 
Russia. This geographic limitation may restrict the generalizability of 
our findings to populations with different genetic backgrounds, risk 
factor profiles, or healthcare practices. Broader, multi-national collab
orations are needed to validate and extend these results.

Model generalizability across imaging protocols: Variability in 
OCT imaging protocols, scanner types, and acquisition parameters 
across clinical sites may affect model performance when applied to 
external datasets. While our multi-center approach partially mitigates 
this issue, further validation on independent cohorts and standardized 
imaging protocols is warranted.

Complexity of feature boundaries: The accurate segmentation of 
features such as the fibrous cap and lipid core remains challenging due 
to their diffuse, overlapping, or ambiguous boundaries in OCT images. 
These challenges are compounded by the inherent resolution limits of 
OCT and the subjective nature of manual annotation, as reflected in the 
observed inter-annotator variability.

Potential overfitting and limited sample size: The observed dif
ference in DSC values between the validation and test sets for the fibrous 
cap, lipid core, and vasa vasorum may indicate overfitting, especially for 
features with limited representation and complex morphology. While 
our use of extensive data augmentation and 5-fold cross-validation helps 
to mitigate this effect, the gap highlights the challenges posed by small 
sample sizes and ambiguous boundaries. Future work will focus on 
expanding the dataset, implementing advanced regularization strate
gies, and exploring more robust model architectures to further improve 
generalizability and reduce overfitting.

Computational demands: The training and optimization of deep 
learning models, especially with extensive hyperparameter tuning, 
required substantial computational resources. This may limit the im
mediate clinical deployment of such models in resource-constrained 
settings.

Model explainability and clinical interpretability: Although we 
employed class activation mapping techniques to visualize model 
attention and included attention-based architectures (e.g., PAN, MA- 
Net), these methods provide only a partial understanding of the 
model’s decision-making process. Specifically, CAM highlights regions 
of interest but does not fully elucidate the complex, multi-layered 
reasoning underlying segmentation predictions, particularly for fea
tures with subtle or ambiguous boundaries. As a result, clinicians may 
find it challenging to validate or trust automated outputs in critical 
scenarios. Further research is needed to develop more transparent and 
interpretable deep learning frameworks, such as transformer-based 
models or inherently explainable architectures, that can offer mecha
nistic insights and foster clinical confidence.

5.5. Future research directions

The following directions outline potential pathways to advance the 
field of OCT processing and address the identified limitations:

Expansion and diversification of datasets: Efforts should focus on 
assembling larger, more diverse datasets encompassing a wide range of 
populations, imaging devices, and clinical scenarios. This will enhance 
model robustness, reduce bias, and improve generalizability.

Standardization and external validation: Adoption of standard
ized imaging protocols and external validation on independent, multi- 
national cohorts are essential to ensure reproducibility and facilitate 
clinical translation.
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Integration of multimodal imaging: Combining OCT with com
plementary modalities such as intravascular ultrasound or near-infrared 
spectroscopy may provide a more comprehensive assessment of plaque 
morphology and vulnerability, enabling more accurate risk 
stratification.

Longitudinal studies: Prospective, longitudinal studies correlating 
automated plaque segmentation with clinical outcomes are needed to 
validate the prognostic value of these methods and to inform personal
ized therapeutic strategies.

Predictive risk assessment and clinical integration: Incorpo
rating predictive analytics to evaluate the clinical significance of 
segmented features can enable the development of risk stratification 
tools that inform preventative care strategies. Integrating these predic
tive models and segmentation tools into existing clinical workflows 
through user-friendly interfaces and decision-support systems will 
facilitate seamless collaboration with cardiologists and intervention
alists, thereby enhancing the translational impact of automated plaque 
analysis.

6. Conclusion

This study tackled the challenge of automating the segmentation and 
quantification of atherosclerotic plaques in OCT images, a critical step in 
advancing cardiovascular diagnostics. Through optimized machine 
learning models, we demonstrated high accuracy in segmenting key 
plaque features, including the lumen (DSC: 0.987), fibrous cap (DSC: 
0.736), lipid core (DSC: 0.751), and vasa vasorum (DSC: 0.610). These 
findings validate the potential of ML-enhanced OCT imaging to improve 
diagnostic precision and efficiency.

Our segmentation framework combined task-specific models – each 
tailored to class prevalence and morphological complexity – with 
rigorous hyperparameter optimization to achieve balanced, high-quality 
predictions across diverse plaque features. To further improve perfor
mance, we integrated these models into a weighted ensemble that 
incorporated class prevalence and model confidence, resulting in a 
harmonized system that achieved a weighted DSC of 0.882. This 
approach effectively mitigated class imbalance and leveraged architec
tural complementarity, outperforming individual models and naive ag
gregation strategies.

Clinically, our framework enables interpretable, spatially resolved, 
and quantifiable assessments of plaque features, facilitating early 
detection of vulnerable plaques, individualized risk stratification, and 
image-guided interventions. However, further prospective, multi-center 
validation is required to confirm its translational impact. Beyond car
diology, the methodology holds interdisciplinary relevance for other 
fields requiring high-resolution tissue imaging, such as oncology and 
neurology.

Future research will prioritize three directions: (1) expanding data
sets to include ethnically diverse populations and rare plaque subtypes 
(2) integrating multimodal imaging (e.g., OCT-IVUS-NIRS fusion), for 
comprehensive plaque characterization, and (3) advancing predictive 
risk assessment and clinical integration by developing risk stratification 
tools and seamlessly incorporating automated segmentation into clinical 
workflows. Immediate next steps include deploying these models in 
prospective clinical trials to validate their prognostic value in longitu
dinal studies and to assess whether ML-driven plaque quantification 
improves outcomes in preventive percutaneous coronary interventions.
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